Skip to main content

Numerical Optimization Methods for the Optimal Control of Elliptic Variational Inequalities

  • Chapter
Frontiers in PDE-Constrained Optimization

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 163))

Abstract

The optimal control of variational inequalities introduces a number of additional challenges to PDE-constrained optimization problems both in terms of theory and algorithms. The purpose of this article is to first introduce the theoretical underpinnings and then to illustrate various types of numerical methods for the optimal control of variational inequalities. For a generic problem class, sufficient conditions for the existence of a solution are discussed and subsequently, the various types of multiplier-based optimality conditions are introduced. Finally, a number of function-space-based algorithms for the numerical solution of these control problems are presented. This includes adaptive methods based on penalization or regularization as well as non-smooth approaches based on tools from non-smooth optimization and set-valued analysis. A new type of projected subgradient method based on an approximation of limiting coderivatives is proposed. Moreover, several existing methods are extended to include control constraints. The computational performance of the algorithms is compared and contrasted numerically.

TMS’s research was sponsored in part by the DFG grant no. SU 963/1-1 as well as Research Center matheon supported by the Einstein Foundation Berlin within project OT1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.

    MATH  Google Scholar 

  2. S. Albrecht and M. Ulbrich. Mathematical programs with complementarity constraints in the context of inverse optimal control for locomotion. Optimization Methods and Software, pages 1–29, 2017.

    Google Scholar 

  3. M. Anitescu, P. Tseng, and S.J. Wright. Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties. Math. Program, 110:337–371, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Antil, M. Hintermüller, R. H. Nochetto, T. M. Surowiec, and D. Wegner. Finite horizon model predictive control of electrowetting on dielectric with pinning. Interfaces Free Bound., 19(1):1–30, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Attouch. Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, Boston, London, Melbourne, 1984.

    MATH  Google Scholar 

  6. H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev and BV spaces, volume 6 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. Applications to PDEs and optimization.

    Google Scholar 

  7. V. Barbu. Optimal control of variational inequalities, volume 100 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.

    Google Scholar 

  8. M. P. Bendsøe and O. Sigmund. Topology Optimization. Theory, methods and Applications. Springer Verlag, Berlin, Heidelberg, New York, 2003.

    Google Scholar 

  9. M. Bergounioux. Optimal control of variational inequalities: a mathematical programming approach. In Modelling and optimization of distributed parameter systems (Warsaw, 1995), pages 123–130. Chapman & Hall, New York, 1996.

    Google Scholar 

  10. M. Bergounioux. Optimal control of an obstacle problem. Appl. Math. Optim., 36(2):147–172, 1997.

    Article  MathSciNet  Google Scholar 

  11. M. Bergounioux. Use of augmented Lagrangian methods for the optimal control of obstacle problems. J. Optim. Theory Appl., 95(1):101–126, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Bermúdez and C. Saguez. Optimal control of a Signorini problem. SIAM J. Control Optim., 25(3):576–582, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on Automatic Control, pages 174–184, 1976.

    Google Scholar 

  14. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh Approach to Numerical Computing. SIAM Rev., 59(1):65–98, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems. Springer Verlag, Berlin, Heidelberg, New York, 2000.

    Book  MATH  Google Scholar 

  16. M. Boukrouche and D. A. Tarzia. Convergence of distributed optimal control problems governed by elliptic variational inequalities. Comput. Optim. Appl., 53(2):375–393, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Brett, C. M. Elliott, M. Hintermüller, and C. Löbhard. Mesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state. Interfaces Free Bound., 17(1):21–53, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. R. Brezis and G. Stampacchia. Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France, 96:153–180, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Chen, Z. Nashed, and L. Qi. Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal., 38(4):1200–1216 (electronic), 2000.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, and J. Sprekels. Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM Journal on Control and Optimization, 53(4):2696–2721, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. C. De Los Reyes. Optimal control of a class of variational inequalities of the second kind. SIAM J. Control Optim., 49(4):1629–1658, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. C. De los Reyes, R. Herzog, and C. Meyer. Optimal control of static elastoplasticity in primal formulation. SIAM J. Control Optim., 54(6):3016–3039, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. C. De los Reyes and C. Meyer. Strong stationarity conditions for a class of optimization problems governed by variational inequalities of the second kind. J. Optim. Theory Appl., 168(2):375–409, 2016.

    Google Scholar 

  24. A. K. Dond, T. Gudi, and N. Nataraj. A nonconforming finite element approximation for optimal control of an obstacle problem. Comput. Methods Appl. Math., 16(4):653–666, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Ekeland and R. Témam. Convex analysis and variational problems, volume 28 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, English edition, 1999. Translated from the French.

    Google Scholar 

  26. L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in advanced mathematics. CRC Press, Boca Raton (Fla.), 1992.

    Google Scholar 

  27. M. H. Farshbaf-Shaker. A penalty approach to optimal control of Allen-Cahn variational inequalities: MPEC-view. Numerical Functional Analysis and Optimization, 33(11):1321–1349, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. H. Farshbaf-Shaker and C. Hecht. Optimal control of elastic vector-valued Allen–Cahn variational inequalities. SIAM Journal on Control and Optimization, 54(1):129–152, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Fichera. Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8), 7:91–140, 1963.

    MathSciNet  MATH  Google Scholar 

  30. R. Glowinski. Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer-Verlag, New York, 1984.

    Google Scholar 

  31. R. Glowinski, J. L. Lions, and R. Trémolières. Numerical analysis of variational inequalities, volume 8 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1981.

    Book  MATH  Google Scholar 

  32. W. Han and B. D. Reddy. Plasticity, volume 9 of Interdisciplinary Applied Mathematics. Springer, New York, second edition, 2013. Mathematical theory and numerical analysis.

    Google Scholar 

  33. A. Haraux. How to differentiate the projection on a convex set in Hilbert space. some applications to variational inequalities. J. Math. Soc. Japan, 29(4):615–631, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Herzog, C. Meyer, and G. Wachsmuth. C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J. Control Optim., 50(5):3052–3082, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Herzog, C. Meyer, and G. Wachsmuth. B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim., 23(1):321–352, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Hintermüller. An active-set equality constrained Newton solver with feasibility restoration for inverse coefficient problems in elliptic variational inequalities. Inverse Problems, 24(3):23pp., 2008.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Hintermüller, R. H. W. Hoppe, and C. Löbhard. Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM Control Optim. Calc. Var., 20(2):524–546, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Hintermüller and I. Kopacka. Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim., 20(2):868–902, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Hintermüller and I. Kopacka. A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl., 50(1):111–145, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Hintermüller and K. Kunisch. Path-following methods for a class of constrained minimization problems in function space. SIAM Journal on Optimization, 17(1):159–187, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Hintermüller and A. Laurain. Optimal shape design subject to elliptic variational inequalities. SIAM Journal on Control and Optimization, 49(3):1015–1047, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Hintermüller, C. Löbhard, and M. H. Tber. An 1-penalty scheme for the optimal control of elliptic variational inequalities. In Mehiddin Al-Baali, Lucio Grandinetti, and Anton Purnama, editors, Numerical Analysis and Optimization, volume 134 of Springer Proceedings in Mathematics & Statistics, pages 151–190. Springer International Publishing, 2015.

    Google Scholar 

  44. M. Hintermüller, B. S. Mordukhovich, and T. M. Surowiec. Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program., 146(1):555–582, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Hintermüller and T. Surowiec. First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim., 21(4):1561–1593, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Hintermüller and T. Surowiec. A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Math. Program., 160(1):271–305, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Hintermüller and D. Wegner. Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system. SIAM Journal on Control and Optimization, 52(1):747–772, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints, volume 23 of Mathematical Modelling: Theory and Applications. Springer, New York, 2009.

    Book  MATH  Google Scholar 

  49. B. Horn and S. Ulbrich. Shape optimization for contact problems based on isogeometric analysis. Journal of Physics: Conference Series, 734(3):032008, 2016.

    Google Scholar 

  50. K. Ito and K. Kunisch. Optimal control of elliptic variational inequalities. Applied Mathematics and Optimization, 41(3):343–364, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the pricing of American options. Acta Appl. Math., 21(3):263–289, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  52. N. Kikuchi and J. T. Oden. Contact problems in elasticity: a study of variational inequalities and finite element methods, volume 8 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

    Google Scholar 

  53. D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980.

    Google Scholar 

  54. Krzysztof C. Kiwiel. Methods of descent for nondifferentiable optimization. Lecture Notes in Mathematics. 1133. Berlin etc.: Springer-Verlag, 1985.

    Google Scholar 

  55. R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities. I. Numer. Math., 69(2):167–184, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  56. K. Kunisch and T. Pock. A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci., 6(2):938–983, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris, 1968.

    MATH  Google Scholar 

  58. J.-L. Lions. Various topics in the theory of optimal control of distributed systems. In Optimal control theory and its applications (Proc. Fourteenth Biennial Sem. Canad. Math. Congr., Univ. Western Ontario, London, Ont., 1973), Part I, pages 116–309. Lecture Notes in Econom. and Math. Systems, Vol. 105. Springer, Berlin, 1974.

    Chapter  Google Scholar 

  59. J.-L. Lions. Contrôle des systèmes distribués singuliers, volume 13 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge, 1983.

    MATH  Google Scholar 

  60. J.-L. Lions and G. Stampacchia. Variational inequalities. Comm. Pure Appl. Math., 20:493–519, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  61. Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, 1996.

    Book  MATH  Google Scholar 

  62. C. Meyer and O. Thoma. A priori finite element error analysis for optimal control of the obstacle problem. SIAM J. Numer. Anal., 51(1):605–628, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  63. F. Mignot. Contrôle dans les inéquations variationelles elliptiques. J. Functional Analysis, 22(2):130–185, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  64. F. Mignot and J.-P. Puel. Optimal control in some variational inequalities. SIAM J. Control and Optimization, 22(3):466–476, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  65. K. Mombaur, A. Truong, and J.-P. Laumond. From human to humanoid locomotion–an inverse optimal control approach. Autonomous Robots, 28(3):369–383, 2010.

    Article  Google Scholar 

  66. B. S. Mordukhovich. Variational analysis and generalized differentiation. I: Basic Theory, volume 330 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2006.

    Book  Google Scholar 

  67. D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42(5):577–685, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  68. P. Neittaanmäki, J. Sprekels, and D. Tiba. Optimization of Elliptic Systems. Springer Monographs in Mathematics. Springer, New York, 2006.

    Google Scholar 

  69. J. V. Outrata, M. Kočvara, and J. Zowe. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, volume 28 of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1998.

    Book  MATH  Google Scholar 

  70. P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE transactions on pattern analysis and machine intelligence, 12(7):174–184, 1990.

    Article  Google Scholar 

  71. J.-F. Rodrigues. Obstacle Problems in Mathematical Physics. Number 134 in North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1984.

    Google Scholar 

  72. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D, 60(1–4):259–268, 1992. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991).

    Google Scholar 

  73. C. Saguez. Optimal control of free boundary problems. In System modelling and optimization (Budapest, 1985), volume 84 of Lecture Notes in Control and Inform. Sci., pages 776–788. Springer, Berlin, 1986.

    MATH  Google Scholar 

  74. H. Scheel and S. Scholtes. Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Mathematics of Operations Research, 25(1):1–22, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  75. H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization, 2(1):121–152, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  76. N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer-Verlag, New York, 1985.

    Book  MATH  Google Scholar 

  77. F. Tröltzsch. Optimal control of partial differential equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels.

    Google Scholar 

  78. J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Automat. Control, 31(9):803–812, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  79. M. Ulbrich. Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim., 13(3):805–842 (2003), 2002.

    Article  MathSciNet  MATH  Google Scholar 

  80. G. Wachsmuth. Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim., 24(4):1914–1932, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  81. G. Wachsmuth. Mathematical programs with complementarity constraints in Banach spaces. J. Optim. Theory Appl., 166(2):480–507, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  82. G. Wachsmuth. A guided tour of polyhedric sets: Basic properties, new results on intersections and applications. Technical report, TU Chemnitz, 2016.

    Google Scholar 

  83. G. Wachsmuth. Towards M-stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Control Optim., 54(2):964–986, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  84. S. W. Walker, A. Bonito, and R. H. Nochetto. Mixed finite element method for electrowetting on dielectric with contact line pinning. Interfaces Free Bound., 12(1):85–119, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  85. Y-S. Wu, K. Pruess, and P. A. Witherspoon. Flow and displacement of Bingham non-Newtonian fluids in porous media. SPE Reservoir Engineering, 7(3), 1992.

    Article  Google Scholar 

  86. J.-P. Yvon. Etude de quelques problèmes de contrôle pour des systèmes distribués. PhD thesis, Paris VI, 1973.

    Google Scholar 

  87. J.-P. Yvon. Optimal control of systems governed by variational inequalities. In Fifth Conference on Optimization Techniques (Rome, 1973), Part I, pages 265–275. Lecture Notes in Comput. Sci., Vol. 3. Springer, Berlin, 1973.

    Google Scholar 

  88. J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim., 5(1):49–62, 1979.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is an extension of a short course given by the author at the “Frontiers in PDE-constrained Optimization” workshop on June 6–10, 2016 at the Institute for Mathematics and its Applications at the University of Minnesota, Minneapolis, which was sponsored by ExxonMobil. The author would therefore like to express his gratitude for the financial support and the opportunity to write this article. In addition, the author would like to thank Harbir Antil, Patrick Farrell, and the two anonymous reviewers for their helpful comments and thought-provoking questions on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Surowiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Surowiec, T.M. (2018). Numerical Optimization Methods for the Optimal Control of Elliptic Variational Inequalities. In: Antil, H., Kouri, D.P., Lacasse, MD., Ridzal, D. (eds) Frontiers in PDE-Constrained Optimization. The IMA Volumes in Mathematics and its Applications, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8636-1_4

Download citation

Publish with us

Policies and ethics