Distributed Parameter Estimation for the Time-Dependent Radiative Transfer Equation

  • Oliver DornEmail author
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 163)


The time-dependent radiative transfer equation (RTE), also called a linear transport equation, is an integro-differential equation that is frequently used for modeling transport processes of “particles” (or “wave packages”) through a medium where the trajectories of the particles are affected by random absorption and scattering processes at any location inside the medium. The probabilities that such absorption and scattering events take place at a given location are quantified by two parameters of the RTE, namely the absorption and scattering cross section, which are usually unknown in many practical applications and need to be estimated as space-dependent functions from the same set of measurements or observations. This is the so-called inverse problem or distributed parameter estimation problem for the RTE, which has close links to the field of PDE-constrained optimization. Due to the complex structure and high dimensionality of the RTE, often PDE-approximations to the RTE are employed for obtaining these estimates where however the two distributed parameters of the RTE appear in transformed form. In this contribution we describe some typical practical approaches for solving such distributed parameter estimation problems for the time-dependent RTE including some of its approximations. We highlight some difficulties encountered in the simultaneous reconstruction of two independent distributed parameters from the same data set.


  1. 1.
    Aki, K. and Richards, P.G.: Quantitative Seismology 2nd edition, University Science Books (2009)Google Scholar
  2. 2.
    Alerstam E., Svensson T. and Andersson-Engels S.: Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration J. Biomed. Opt.13 060504 (2008).CrossRefGoogle Scholar
  3. 3.
    Arianfar P. and Emamirad H.: Relation between scattering and albedo operators in linear transport theory, Transport Theory and Statistical Physics, 23:4, 517–531 (1994).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arridge S.R., Optical tomography in medical imaging, Inverse Problems 15, R41 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arridge S.R. and Schotland J.C.: Optical Tomography: forward and inverse problems, Inverse Problems25 (12) 123010 (59pp) (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arridge, S.: Methods in Diffuse Optical Imaging, Phil. Trans. R. Soc. A (2011) 369, 4558–4576MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bal G.: Inverse Transport Theory and Applications, Inverse Problems25 (5) (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bal G. and Moscoso M.: Polarization Effects of Seismic Waves on the Basis of Radiative Transport Theory, Geophys. J. Int.142 (2), pp 1639–1666 (2000).CrossRefGoogle Scholar
  9. 9.
    Bell, G.I. - Glasstone, S.: Nuclear Reactor Theory, Van Nostrand-Reinhold, Raleigh, North Carolina, (1970).Google Scholar
  10. 10.
    Börgers, C., Larsen, E.W. and Adams, M.L.: The Asymptotic Diffusion Limit of a Discontinuous Linear Transport Equation, J. Comp. Phys.98, (1992), pp 285ff.Google Scholar
  11. 11.
    Börgers, C.: The radiation therapy planning problem, in Computational Radiology and Imaging: Therapy and Diagnostics, IMA Volumes in Mathematics and its Applications 110, C. Börgers and F. Natterer (eds.), 1–15 (1999)CrossRefGoogle Scholar
  12. 12.
    Bondarenko, A.N.: Structure of singularities of the fundamental solution of the transport equation, Dokl. Akad. Nauk SSSR322, (1992), pp 274–276.Google Scholar
  13. 13.
    Burger M.: A level set method for inverse problems, Inverse Problems17 (5) pp 1327–55 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Carpio, A. and Rapún, M.-L.: Solving inhomogeneous inverse problems by topological derivative methods, Inverse Problems24 045014 (32pp) (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Case, K.M. and Zweifel, P.F.: Linear Transport Theory, Plenum Press, New York, (1967).zbMATHGoogle Scholar
  16. 16.
    Cercignani, C.: Theory and Applications of the Boltzmann Equation, Elsevier, New York, (1975).zbMATHGoogle Scholar
  17. 17.
    Chandrasekhar, S.: Radiative Transfer, Oxford Univ. Press, London, (1950). Also: Dover, New York, (1960).Google Scholar
  18. 18.
    Chen J. and Intes X.: Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency, Med. Phys.38 (10) pp 5788–98 (2011)CrossRefGoogle Scholar
  19. 19.
    Choulli, M. and Stefanov, P.: Inverse Scattering and Inverse Boundary Value Problems for the Linear Boltzmann Equation, Comm. Part. Diff. Equ.21(5&6), (1996), pp 763–785.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cooper J.: Sparsity Regularization in Diffuse Optical Tomography, PhD Thesis Clemson University (2012)Google Scholar
  21. 21.
    Daubechies I., Defrise M. and De Mol C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics57 (11) pp 1413–1457 (2004).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dautray, R. and Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol.5, Springer, Berlin, (1993).zbMATHGoogle Scholar
  23. 23.
    Dautray, R. and Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol.6, Springer, Berlin, (1993).zbMATHGoogle Scholar
  24. 24.
    Davison, B.: Neutron Transport Theory, Oxford Univ. Press, London, (1957).zbMATHGoogle Scholar
  25. 25.
    Delfour M.C. and Zolésio J. P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization (2nd ed.) SIAM (2011)Google Scholar
  26. 26.
    Dierkes T., Dorn O., Natterer F., Palamodov V. and Sielschott H.: Fréchet Derivatives for some Bilinear Inverse Problems, SIAM J. Appl. Math.62 (6) pp 2092–2113 (2002).MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dorn O.: Das inverse Transportproblem in der Lasertomographie, PhD-thesis, Westfälische Wilhelms Universität Münster, Germany (1997)zbMATHGoogle Scholar
  28. 28.
    Dorn O.: A transport-backtransport method for optical tomography, Inverse Problems14 pp 1107–1130 (1998)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dorn O.: Scattering and absorption transport sensitivity functions for optical tomography Optics Express7 (13) pp 492–506 (2000)Google Scholar
  30. 30.
    Dorn O. and Lesselier D.: Level set methods for inverse scattering, Inverse Problems22 pp R67–R131 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dorn O. and Lesselier D.: Level set methods for inverse scattering - some recent developments, Inverse Problems25 125001 (11pp) (2009)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Duderstadt, J.J. and Martin, W.R.: Transport Theory, Wiley, New York, (1979).zbMATHGoogle Scholar
  33. 33.
    H. Emamirad and V. Protopopescu: Relationship between the albedo and scattering operators for the Boltzmann equation with semi-transparent boundary conditions, Mathematical Methods in the Applied Sciences, Vol 19, 1–13 (1996)zbMATHGoogle Scholar
  34. 34.
    Feijóo, G.: A new method in inverse scattering based on the topological derivative, Inverse Problems20 pp 1819–1840 (2004).MathSciNetCrossRefGoogle Scholar
  35. 35.
    González-Rodríguez P. and Kim A.D., Comparison of light scattering models for diffuse otpical tomography, Optics Express17 (11) pp 8756–8774 (2009)CrossRefGoogle Scholar
  36. 36.
    Habetler, G.J. and Matkowsky, B.J.: Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation, Journ. Math. Phys.16 (4), (1975), pp 846ff.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hammersley, J.M. and Handscomb, D.C.: Monte Carlo Methods, Methuen & Co LTD, London, (1965).zbMATHGoogle Scholar
  38. 38.
    Hayakawa C.K., Spanier J. and Venugopalan, V.: Coupled Forward-adjoint Monte-Carlo Simulations of Radiative Transport for the Study of Optical Probe Design in Heterogeneous Tissues, SIAM J. Appl. Math.68 (1) pp 253–270, (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hejtmanek, J.: Time-Dependent Linear Transport Theory, in: Kinetic Theories and the Boltzmann Equation, Lecture Notes in Mathematics 1048, Eds. A.Dold, B. Eckmann, (1981).Google Scholar
  40. 40.
    Ishimaru, A.: Wave Propagation and Scattering in Random Media, 2 Vol., Academic Press, New York, (1978).zbMATHGoogle Scholar
  41. 41.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping, AK Peters Publisher, ISBN 1568811470 (2001).Google Scholar
  42. 42.
    Jin B. and Maass P.: Sparsity regularization for parameter identification problems, Inverse Problems28 (12) 123001 (70pp) (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kaltenbach, J.M. and Kaschke, M.: Frequency- and Time-Domain Modelling of Light transport in Random Media, in: Medical Optical Tomography, ed. Potter, SPIE Optical Engineering Press, Vol. IS11, (1993), pp 65–86.Google Scholar
  44. 44.
    Larsen, E.W. and Keller, J.B.: Asymptotic solution of neutron transport problems for small mean free paths, J. Math. Phys.15 (1), (1974), pp 75ff.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Larsen, E.W.: Asymptotic Theory of the Linear Transport Equation for small mean free Paths, II, Siam J. Appl. Math.33, (1976), pp 427ff.Google Scholar
  46. 46.
    Lau C.W. and Watson K.M.: Radiation Transport along Curved Ray Paths, J Math Phys11 pp 3125–37 (1970)CrossRefGoogle Scholar
  47. 47.
    Lewins, J.: Importance - The Adjoint Function, Pergamon Press, Oxford, (1965).Google Scholar
  48. 48.
    Lewis, E.E. and Miller Jr., W.F.: Computational Methods of Neutron Transport, Wiley, New York, (1984).zbMATHGoogle Scholar
  49. 49.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin Heidelberg, (1971).CrossRefGoogle Scholar
  50. 50.
    Lux, I. and Koblinger, L.: Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, (1991).Google Scholar
  51. 51.
    Margerin L., Campilo M. and Van Tiggelen B., Monte Carlo simulation of multiple scattering of elastic waves, Journal of Geophyisical Research105 No B4, pp 7873–7892 (2000)CrossRefGoogle Scholar
  52. 52.
    McCormick, N.J.: Recent Developments in Inverse Scattering Transport Methods, Transp. Theory and Statist. Physics13 (1&2), (1984), pp 15–28.MathSciNetCrossRefGoogle Scholar
  53. 53.
    McCormick, N.J.: Methods for solving Inverse Problems for Radiation Transport - An update, Transp. Theory and Stat. Physics15 (6&7), (1986), pp 759–772.MathSciNetCrossRefGoogle Scholar
  54. 54.
    McDowall, S.R.: Optical Tomography on Simple Riemannian Surfaces, Communications in Partial Differential Equations30, pp 1379–1400 (2005).MathSciNetCrossRefGoogle Scholar
  55. 55.
    Natterer, F.: The Mathematics of Computerized Tomography, B.G. Teubner, Stuttgart, (1986).zbMATHGoogle Scholar
  56. 56.
    Natterer, F.: Numerical Solution of Bilinear Inverse Problems, Preprint Westfälische Wilhelms Universität Münster, Germany (1995)Google Scholar
  57. 57.
    Natterer, F. and Wübbeling F.: Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, (2001).CrossRefGoogle Scholar
  58. 58.
    Nocedal J. and Wright S.: Numerical Optimization, Springer Series in Operations Research and Financial Engineering (2006)Google Scholar
  59. 59.
    Osher S. and Sethian J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, J. Comput. Phys.79 pp 12–49 (1988)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W.: An iterative regularization method for total variation-based image restoration Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal4 (2) pp 460–489 (2005)Google Scholar
  61. 61.
    Papanicolaou, G.: Asymptotic analysis of transport processes, Bulletin of the American Mathematical Society, Vol 81 (2), (1975)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations Springer Series ‘Applied Mathematical Sciences’ Vol 44 (1983).Google Scholar
  63. 63.
    Prieto Moreno K.E.: Novel mathematical techniques for structural inversion and image reconstruction in medical imaging governed by a transport equation, PhD thesis, The University of Manchester, UK (2015).Google Scholar
  64. 64.
    Prieto K. and Dorn O.: Sparsity and Level Set Regularization For Diffuse Optical Tomography Using a Transport Model in 2D, Inverse Problems33 014001 (28pp) (2017).MathSciNetCrossRefGoogle Scholar
  65. 65.
    Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, Vol. 3, Academic Press, New York, (1979).zbMATHGoogle Scholar
  66. 66.
    Ryzhik L., Papanicolaou G. and Keller J.B.: Transport Equations for Elastic and Other Waves in Random Media, Wave Motion24, pp 327–370.MathSciNetCrossRefGoogle Scholar
  67. 67.
    Sanchez, R. and McCormick, N.J.: A Review of Neutron Transport Approximations, Nucl. Sci. Eng.80, (1981), pp 481–535.CrossRefGoogle Scholar
  68. 68.
    Santosa F.: A level-set approach for inverse problems involving obstacles, ESAIM: Control, Optimization and Calculus of Variations1 pp 17–33 (1996).MathSciNetzbMATHGoogle Scholar
  69. 69.
    Sato, H. and Fehler, M.C. and Maeda, T.: Seismic Wave Propagation and Scattering in the Heterogeneous Earth: Second Edition, Springer, (2012).CrossRefGoogle Scholar
  70. 70.
    Sheng P., Introduction to wave scattering, localization and mesoscopic phenomena, Springer, Berlin-Heidelberg, (2006)Google Scholar
  71. 71.
    Shreider, Yu.A.: Method of Statistical Testing: Monte Carlo Method, Elsevier Publishing Company, Amsterdam, (1964).zbMATHGoogle Scholar
  72. 72.
    Schuster, A.: Radiation through a foggy atmosphere, Astrophys. Journal21, (1905).CrossRefGoogle Scholar
  73. 73.
    Siewert, C.E.: On the Singular Components of the Solution to the Searchlight Problem in Radiative Transfer J. Quant. Radiat. Transfer, 33 (6), (1985), pp 551–554.CrossRefGoogle Scholar
  74. 74.
    Sobolev, V.V.: A Treatise on Radiative Transfer (translated from Russian), Princeton, New Jersey, (1963).Google Scholar
  75. 75.
    Spanier, J. and Gelbard, E.M.: Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley, Reading, (1969).zbMATHGoogle Scholar
  76. 76.
    Van de Hulst, H.C.: Multiple Light Scattering, 2 Vol., Academic Press, New York, (1980).Google Scholar
  77. 77.
    Vogel, C. and Oman, M.: Fast, robust total variation-based reconstruction of noisy blurred images, IEEE Transactions on Image Processing7(6) pp 813–824 (1998)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Wang L. and Jacques S.L.: Hybrid model of Monte Carlo simulation diffusion theory for light reflectance by turbid media J. Opt. Soc. Am. A10 pp 1746–52 (1993).Google Scholar
  79. 79.
    Weinberg A.M. and Wigner E.P.: The Physical Theory of Neutron Chain Reactors, University Chicago Press, (1958).Google Scholar
  80. 80.
    Wing, G.M.: An Introduction to Transport Theory, Wiley, New York, (1962).Google Scholar
  81. 81.
    Wright, S., Schweiger, M. and Arridge, S.R.: Reconstruction in optical tomography using the PN approximations, Meas. Sci. Technol.18 pp 79–86 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsThe University of ManchesterManchesteUK

Personalised recommendations