Skip to main content

Cardiorenal Acute Kidney Injury: Epidemiology, Presentation, Causes, Pathophysiology, and Treatment

  • Chapter
  • First Online:
Core Concepts in Acute Kidney Injury

Abstract

Cardiovascular disease and major cardiovascular events represent the main cause of death in both acute and chronic kidney disease patients.

Kidney and heart failure are common and frequently coexist; this organ-organ interaction, also called organ cross talk, leads to a well-known definition of cardiorenal syndrome (CRS). Here, we’ll describe cardiovascular involvement in patients with acute kidney injury (AKI). Also known as type-3 CRS or acute reno-cardiac CRS, it occurs when AKI contributes to and/or precipitates the development of acute cardiac injury.

AKI may directly or indirectly produce an acute cardiac event, and it can be associated to volume overload, metabolic acidosis, and electrolyte disorders such as hyperkalemia and hypocalcemia; coronary artery disease, left ventricular dysfunction, and fibrosis have been also described in patients with AKI with consequent direct negative effects on cardiac performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronco C, McCullough P, Anker SD, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31:703–11.

    Article  Google Scholar 

  2. Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res. 2004;95(12):1140–53.

    Article  CAS  Google Scholar 

  3. Kingma JG Jr, Vincent C, Rouleau JR, Kingma I. Influence of acute renal failure on coronary vasoregulation in dogs. J Am Soc Nephrol. 2006;17(5):1316–24.

    Article  CAS  Google Scholar 

  4. Bagshaw SM, Cruz DN. Aspromonte N, et al, and for the Acute Dialysis Quality Initiative (ADQI) Consensus Group. Epidemiology of cardio-renal syndrome: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25:1406–16.

    Article  Google Scholar 

  5. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky PM, the ADQI Workgroup. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs. The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article  Google Scholar 

  6. Mehta RL, Kellum JA, Shah SV, et al. Acute kidney injury network (AKIN): report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  Google Scholar 

  7. Lewington A, Kanagasundaram S. Kidney diseases: Improving Global Outcomes (KDIGO) acute kidney injury clinical practice guideline. Kidney Int. 2012;2(1):1–138.

    Article  Google Scholar 

  8. Uchino S, Kellum JA, Bellomo R, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

    Article  CAS  Google Scholar 

  9. Dickstein K, Cohen-Solal A, Filipatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10:933–89.

    Article  Google Scholar 

  10. Jessup M, Abraham WT, Casey DE, et al. ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.

    Article  Google Scholar 

  11. Gheorghiade M, Zannad F, Sopko G, et al. Failure syndromes: current state and framework for future research. Circulation. 2005;112:3958–68.

    Article  Google Scholar 

  12. Heywood JT, Fonarow GC, Costanzo MR, et al. High prevalence of renal dysfunction and its impact on outcome in 118465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–30.

    Article  Google Scholar 

  13. Siirila-Waris K, Lassus J, Melin J, et al. Characteristics, otucomes, and predictors of 1 year mortality in patients hospitalized for acute heart failure. Eur Heart J. 2006;27:3011–7.

    Article  Google Scholar 

  14. Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.

    Article  CAS  Google Scholar 

  15. De Abreu KLS, Silva Junior GB, Carreto AGC, et al. Acute kidney injury after trauma: prevalence, clinical characteristics and RIFLE classification. Indian J Crit Care Med. 2010;14:121–8.

    Article  Google Scholar 

  16. Raine A, Margreiter R, Brunner F, et al. Report on management of renal failure in Europe. XXII. Nephrol Dial Transplant. 1992;7(Suppl 2):7–35.

    PubMed  Google Scholar 

  17. Schwilk B, Wiedeck H, Stein B, et al. Epidemiology of acute renal failure and outcome of haemodiafiltration in intensive care. Intensive Care Med. 1997;23:1204–11.

    Article  CAS  Google Scholar 

  18. Song JH, Humes HD. Renal cell therapy and beyond. Semin Dial. 2009;22:603–9.

    Article  Google Scholar 

  19. Wen X, Murugan R, Peng Z, Kellum JA. Pathophysiology of acute kidney injury: a new perspective. Contrib Nephrol. 2010;165:39–45.

    Article  Google Scholar 

  20. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26(1):11–7.

    Article  Google Scholar 

  21. Ma XL, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992;86(3):937–46.

    Article  CAS  Google Scholar 

  22. Blake P, Hasegawa Y, Khosla MC, Fouad-Tarazi F, Sakura N, Paganini EP. Isolation of “myocardial depressant factor(s)” from the ultrafiltrate of heart failure patients with acute renal failure. ASAIO J. 1996;42(5):M911–5.

    Article  CAS  Google Scholar 

  23. Edmunds NJ, Lal H, Woodward B. Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. Br J Pharmacol. 1999;126(1):189–96.

    Article  CAS  Google Scholar 

  24. Rauchhaus M, Doehner W, Francis DP, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000;102(25):3060–7.

    Article  CAS  Google Scholar 

  25. Chuasuwan A, Kellum JA. Cardio-renal syndrome type 3: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012;32(1):31–9.

    Article  CAS  Google Scholar 

  26. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol. 1997;29(3):859–70.

    Article  CAS  Google Scholar 

  27. Nath KA, Grande JP, Croatt AJ, et al. Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am J Pathol. 2005;166(4):963–72.

    Article  CAS  Google Scholar 

  28. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14(6):1549–58.

    Article  CAS  Google Scholar 

  29. Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation. 1998;97:1375–81.

    Article  CAS  Google Scholar 

  30. Liu YH, D’Ambrosio M, Liao TD, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(2):H404–12.

    Article  CAS  Google Scholar 

  31. De Deyn PP, vanholder R, D’Hooge R. Nitric oxide in uremia: effects of several potentially toxic guanidino compounds. Kidney Int. 2003;63(84 Suppl):S25–8.

    Article  Google Scholar 

  32. Scheuer J, Stezoski W. The effects of uremic compounds on cardiac function and metabolism. J Mol Cell Cardiol. 1973;5:287–300.

    Article  CAS  Google Scholar 

  33. Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology. Br Med J. 2000;320:167–70.

    Article  CAS  Google Scholar 

  34. Li L, Lee EW, Ji H, Zukowska Z. Neuropeptide Y-induced acceleration of postangioplasty occlusion of rat carotid artery. Arterioscler Thromb Vasc Biol. 2003;23:1204–10.

    Article  CAS  Google Scholar 

  35. Shah BN, Greaves K. The cardio-renal syndrome: a review. Int J Nephrol. 2011;2011:920195. https://doi.org/10.4061/2011/920195.

    Article  Google Scholar 

  36. Qin F, Patel R, Yan C, Liu W. NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med. 2005;40:236–46.

    Article  Google Scholar 

  37. Chabrashvili T, Kitiyakara C, Blau J, et al. Effects of ANF II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol. 2003;285:R117–24.

    Article  CAS  Google Scholar 

  38. Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2003;35:851–9.

    Article  CAS  Google Scholar 

  39. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–8.

    Article  CAS  Google Scholar 

  40. Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. 2003;93(7):592–4.

    Article  CAS  Google Scholar 

  41. Licurse A, Kim MC, Dziura J, Forman HP, Formica RN, Makarov DV, Parikh CR, Gross CP. Renal ultrasonography in the evaluation of acute kidney injury: developing a risk stratification framework. Arch Intern Med. 2010;170:1900–7.

    PubMed  Google Scholar 

  42. Ozmen CA, Akin D, Bilek SU, Bayrak AH, Senturk S, Nazaroglu H. Ultrasound as a diagnostic tool to differentiate acute from chronic renal failure. Clin Nephrol. 2010;74:46–52.

    CAS  PubMed  Google Scholar 

  43. Darmon M, Schortgen F, Vargas F, Liazydi A, Schlemmer B, Brun-Buisson C, Brochard L. Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med. 2011;37(1):68–76.

    Article  Google Scholar 

  44. Di Lullo L, Floccari F, Granata A, D’Amelio A, Rivera R, Fiorini F, Malaguti M, Timio M. Ultrasonography: Ariadne’s thread in the diagnosis of cardiorenal syndrome. Cardiorenal Med. 2012;2(1):11–7; Epub 2011 Nov 30.

    Article  Google Scholar 

  45. Negishi K, Noiri E, Doi K, et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol. 2009;174:1154–9.

    Article  CAS  Google Scholar 

  46. Hu M-C, Shi M, Zhang J, et al. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010;78:1240–51.

    Article  CAS  Google Scholar 

  47. Reeves WB, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol. 2007;294:F731–F8.

    Article  Google Scholar 

  48. Hayashi H, Sato W, Maruyama S, et al. Urinary Midkine as a biomarker of acute kidney injury: comparison with three major biomarkers; NAG, IL-18 and NGAL [abstract]. NDT Plus. 2009;2:ii, 1634, Suppl 2.

    Google Scholar 

  49. McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation. 2002;106:416–22.

    Article  Google Scholar 

  50. Wu AH, Jaffe AS, Apple FS, et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem. 2007;53:2086–96.

    Article  CAS  Google Scholar 

  51. Januzzi JL Jr, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95:948–54.

    Article  CAS  Google Scholar 

  52. Di Lullo L, Barbera V, Santoboni A, Bellasi A, Cozzolino M, De Pascalis A, Rivera R, Balducci A, Russo D, Ronco C. Troponins and chronic kidney disease. G Ital Nefrol. 2015;32(4).

    Google Scholar 

  53. Glatz JF, Vander Vusse FJ, Maessen JG, et al. Fatty acid-binding protein as marker of muscle injury: experimental fi and clinical application. Acta Anaesthesiol Scand Suppl. 1997;111:292–4.

    CAS  PubMed  Google Scholar 

  54. Taglieri N, Fernandez-Berges DJ, Koenig W, et al. Plasma cystatin C for prediction of 1-year cardiac events in Mediterranean patients with non-ST elevation acute coronary syndromes. Atherosclerosis. 2010;209:300–5.

    Article  CAS  Google Scholar 

  55. Furtado MV, Rossini AP, Campani RB, et al. Interleukin-18: an independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up. Coron Artery Dis. 2009;20:327–31.

    Article  Google Scholar 

  56. Liyan C, Jie Z, Xiaozhou H. Prognostic value of combination of heart-type fatty acid-binding protein and ischemia-modified albumin in patients with acute coronary syndromes and normal troponin T value. J Clin Lab Anal. 2009;23:14–8.

    Article  Google Scholar 

  57. Mehta RL, Pascual MT, Soroko SH, et al. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288:2547–53.

    Article  CAS  Google Scholar 

  58. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.

    Article  Google Scholar 

  59. Srisawat N, Murugan R, Lee M, Kong L, Carter M, Angus DC, et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 2011;80:545–52.

    Article  CAS  Google Scholar 

  60. Srisawat N, Wen X, Lee M, Kong L, Elder M, Carter M, et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol. 2011;6:1815–23.

    Article  CAS  Google Scholar 

  61. Payen D, Mateo J, Cavaillon JM, Fraisse F, Floriot C, Vicaut E. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009;37:803–10.

    Article  Google Scholar 

  62. Karvellas CJ, Farhat MR, Sajjad I, Mogensen SS, Leung AA, Wald R, et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care. 2011;15:R72.

    Article  Google Scholar 

  63. Clec’h C, Darmon M, Lautrette A, Chemouni F, Azoulay E, Schwebel C, et al. Efficacy of renal replacement therapy in critically ill patients: a propensity analysis. Crit Care. 2012;16:R236.

    Article  Google Scholar 

  64. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, et al. An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs Augmented Level of Replacement Therapy trial. Crit Care Med. 2012;40:1753–60.

    Article  Google Scholar 

  65. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med. 2009;37:2576–82.

    Article  Google Scholar 

  66. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39:987–97.

    Article  CAS  Google Scholar 

  67. Berbece AN, Richardson RM. Sustained low-efficiency dialysis in the ICU: cost, anticoagulation, and solute removal. Kidney Int. 2006;70:963–8.

    Article  CAS  Google Scholar 

  68. Kumar VA, Craig M, Depner TA, Yeun JY. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000;36:294–300.

    Article  CAS  Google Scholar 

  69. Wu VC, Wang CH, Wang WJ, Lin YF, Hu FC, Chen YW, et al. Sustained low-efficiency dialysis versus continuous veno-venous hemofiltration for postsurgical acute renal failure. Am J Surg. 2010;199:466–76.

    Article  Google Scholar 

  70. Schwenger V, Weigand MA, Hoffmann O, Dikow R, Kihm LP, Seckinger J, et al. Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury-a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts. Crit Care. 2012;16:R140.

    Article  Google Scholar 

  71. Legrand M, Darmon M, Joannidis M, Payen D. Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med. 2013;39:101–8.

    Article  Google Scholar 

  72. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ronco, C., Di Lullo, L. (2018). Cardiorenal Acute Kidney Injury: Epidemiology, Presentation, Causes, Pathophysiology, and Treatment. In: Waikar, S., Murray, P., Singh, A. (eds) Core Concepts in Acute Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8628-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8628-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8626-2

  • Online ISBN: 978-1-4939-8628-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics