Skip to main content

Effects of Anthropogenic Noise on Amphibians and Reptiles

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 66))

Abstract

Anurans are highly vocal species that rely on acoustic communication for social behaviors. The advertisement (mating) calls of many anurans contain considerable energy within the predominant spectral range of traffic and other anthropogenic-noise sources. Whether and how these noise sources affect reproductive success and species viability is unclear. Data that address how anthropogenic sources affect the spatial distribution of breeding ponds, production and propagation of males’ vocal signals, and detection and discrimination of these signals by females are inconsistent. Anurans may respond to anthropogenic noise using many of the same strategies that they use to deal with biotic and abiotic noise. But there are considerable differences between species in their responses to noise, related to habitat and other variables. Interpretation of data is hampered by the small numbers of species that have been studied; moreover, experiments to date focus only on the perception of advertisement calls and do not address how other biologically important vocalizations, such as aggressive and courtship calls, might be affected by anthropogenic noise. Some species of reptiles are also vocal, but data on the effects of anthropogenic noise on reptile social behaviors are severely lacking. Extensive research is needed to determine the impact of acoustic habitat degradation on these classes of animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amézquita, A., Flechas, S. V., Lima, A. P., Gasser, H., & Hödl, W. (2011). Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proceedings of the National Academy of Sciences of the United States of America, 108, 17058-17063.

    Google Scholar 

  • AmphibiaWeb (2017). Available at http://www.amphibiaweb.org/.

  • Arch, V. S., Grafe, T. U., & Narins, P. M. (2008). Ultrasonic signaling by a Bornean frog. Biology Letters, 4, 19–22.

    Article  PubMed  Google Scholar 

  • Barrass, A. N. (1985). The effects of highway traffic noise on the phonotactic and associated reproductive behavior of selected anurans. Unpublished PhD Dissertation, Vanderbilt University, Nashville, TN.

    Google Scholar 

  • Bee, M. A., & Swanson, E. M. (2007). Auditory masking of anuran advertisement calls by road traffic noise. Animal Behaviour, 74, 1765–1776.

    Article  Google Scholar 

  • Bee, M. A., Perrill, S. A., & Owen, P. C. (2000). Male green frogs lower the pitch of acoustic signals in defense of territories: A possible dishonest signal of size? Behavioral Ecology, 11, 169–177.

    Article  Google Scholar 

  • Bibikov, N. G. (2002). Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hearing Research, 173, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Boatright-Horowitz, S. S., Cheney, C. A., & Simmons, A. M. (1999). Atmospheric and underwater propagation of bullfrog vocalizations. Bioacoustics, 9, 257–280.

    Article  Google Scholar 

  • Bouchard, J., Ford, A. T., Eigenbrod, F., & Fahrig, L. (2009). Behavioral responses of northern leopard frogs (Rana pipiens) to roads and traffic: Implications for population persistence. Ecology and Society, 14, 23. Available at http://www.ecologyandsociety.org/vol14/iss2/art23/.

  • Brittan-Powell, E. F., Christensen-Dalsgaard, J., Tang, Y., Carr, C., & Dooling, R. J. (2010). The auditory brainstem response in two lizard species. The Journal of the Acoustical Society of America, 128, 787–794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brumm, H., & Zollinger, S. A. (2011). The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour, 148, 1173–1198.

    Article  Google Scholar 

  • Caldwell, M. S., & Bee, M. A. (2014). Spatial hearing in Cope’s gray treefrog: Open and closed loop experiments on sound localization in the presence and absence of noise. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 200, 265–284.

    Article  PubMed  Google Scholar 

  • Caldwell, M. S, Johnston, G. R., McDaniel, J. G., & Warkentin, K. M. (2010). Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Current Biology, 20, 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  • Capranica, R. R., & Moffat, A. J. M. (1983). Neurobehavioral correlates of sound communication in anurans. In J. P. Ewert, R. R. Capranica, & D. Ingle (Eds.), Advances in Vertebrate Neuroethology (pp. 701–730). New York: Plenum Press.

    Chapter  Google Scholar 

  • Crawford, A. C., & Fettiplace, R. (1980). The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. The Journal of Physiology, 306, 79–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnington, G. M., & Fahrig, L. (2010). Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 36, 463–470.

    Article  Google Scholar 

  • Cunnington, G. M., & Fahrig, L. (2013). Mate attraction by male anurans in the presence of traffic noise. Animal Conservation, 16, 275–285.

    Article  Google Scholar 

  • Dooling, R. J., Lohr, B., & Dent, M. L. (2000). Hearing in birds and reptiles. In R. J. Dooling, A. N. Popper, & R. R. Fay (Eds.), Comparative Hearing: Birds and Reptiles (pp. 308–359). New York, Springer-Verlag.

    Chapter  Google Scholar 

  • Ehret, G., & Gerhardt, H. C. (1980). Auditory masking and effects of noise on responses of the green treefrog (Hyla cinerea) to synthetic mating calls. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 141, 13–18.

    Article  Google Scholar 

  • Eigenbrod, F., Hecnar, S. J., & Fahrig, L. (2009). Quantifying the road-effect zone: threshold effects of a motorway on anuran populations in Ontario, Canada. Ecology and Society, 14, 24. Available at http://www.ecologyandsociety.org/vol14/iss1/art24/.

  • Ey, E., & Fischer, J. (2009). The “acoustic adaptation hypothesis”—A review of the evidence from birds, anurans and mammals. Bioacoustics, 19, 21–48.

    Article  Google Scholar 

  • Fay, R. R., & Simmons, A. M. (1999). The sense of hearing in fishes and amphibians. In R. R. Fay & A. N. Popper (Eds.), Comparative Hearing: Fish and Amphibians (pp. 269–318). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., Xu, Z.-M., & Shen, J.-X. (2006). Ultrasonic communication in frogs. Nature, 440, 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, C. R., Vogt, R. C., Sousa-Lima, R. S., Tardio, B. M. R., & Bernardes, V. C. C. (2014). Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica, 70, 149–156.

    Article  Google Scholar 

  • Freedman, E. G., Ferragamo, M., & Simmons, A. M. (1988). Masking patterns in the bullfrog (Rana catesbeiana). II: Physiological effects. The Journal of the Acoustical Society of America, 84, 2081–2091.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, H. C. (1975). Sound pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 102, 1–12.

    Article  Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic Communication in Insects and Frogs: Common Problems and Diverse Solutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Goense, J. B. M., & Feng, A. S. (2012). Effects of noise bandwidth and amplitude modulation on masking in frog auditory midbrain neurons. PLoS ONE, 7(2), e31589. https://doi.org/10.1371/journal.pone.0031589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goutte, S., Dubois, A., & Legendre, F. (2013). The importance of ambient sound level to characterize anuran habitat. PLoS ONE, 8, e78020. https://doi.org/10.1371/journal.pone.0078020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gridi-Papp, M., & Narins, P. M. (2010). Seismic detection and communication in amphibians. In C. E. O’Connell-Rodwell (Ed.), The Use of Vibrations in Communication: Properties, Mechanisms and Function Across Taxa (pp. 69–83). Kerala, India: Transworld Research Network.

    Google Scholar 

  • Halfwerk, W., Jones, P. L., Taylor, R. C., Ryan, M. J., & Page, R. A. (2014). Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science, 343, 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Halfwerk, W., Lea, A.M., Guerra, M. A., Page, R. A., & Ryan, M. J. (2016). Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology, 27(2), 669–676.

    Article  Google Scholar 

  • Herrera-Montes, M. I., & Aide, T. M. (2011). Impacts of traffic noise on anuran and bird communities. Urban Ecosystems, 14, 415–427. https://doi.org/10.1007/s11252-011-0158-7.

    Article  Google Scholar 

  • Hof, C., Araujo, M. B., Jetz, W., & Rahbek, W. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 48, 516–521.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Hammers, J. L. (2009). The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour, 146, 1053–1069.

    Article  Google Scholar 

  • Kaiser, K., Scofield, D. G., Alloush, M., Jones, R. M., Marczak, S., Martineau, K., Oliva, M. A., & Narins, P. M. (2011). When sounds collide: The effect of anthropogenic noise on a breeding assemblage of frogs in Belize, Central America. Behaviour, 148, 215–232.

    Article  Google Scholar 

  • Kaiser, K., Devito, J., Jones, C. G., Marentes, A., Perez, R., Umeh, L., Weickum, R. M., McGovern, K. E., Wilson, E. H., & Saltzman, W. (2015). Effects of anthropogenic noise on endocrine and reproductive function in White’s treefrog, Litoria caerulea. Conservation Physiology, 3(1), cou061. https://doi.org/10.1093/conphys/cou061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lengagne, T. (2008). Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biological Conservation, 141, 2023–2031.

    Article  Google Scholar 

  • Lewis, E. R., & Narins, P. M. (1985). Do frogs communicate with seismic signals? Science, 227, 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, P. T., Narins, P. M., Lewis, E. R., & Moore, S. W. (1988). Acoustically induced call modification in the white-lipped frog, Leptodactylus albilabris. Animal Behaviour, 36, 1295–1308.

    Article  Google Scholar 

  • Love, E. K., & Bee, M. A. (2010). An experimental test of noise-dependent voice amplitude regulation in Cope’s gray treefrog, Hyla chrysoscelis. Animal Behaviour, 80, 509–515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mancera, K. F., Murray, P. J., Lisle, A., Dupont, C., Faucheux, F., & Phillips, C. J. C. (2017). The effects of acute exposure to mining machinery noise on the behavior of eastern blue-tongued lizards (Tiliqua scincoides). Animal Welfare, 26, 11–24. https://doi.org/10.7120/09627286.26.1.011.

    Article  Google Scholar 

  • Martin, K. J., Alessi, S. C., Gaspard, J. C., Tucker, A. D., Bauer, G. B., & Mann, D. A. (2012). Underwater hearing in the loggerhead turtle (Caretta caretta): A comparison of behavioral and auditory evoked potential audiograms. Journal of Experimental Biology, 215, 3001–3009.

    Article  PubMed  Google Scholar 

  • Megela-Simmons, A. (1984). Behavioral vocal response thresholds to mating calls in the bullfrog, Rana catesbeiana. The Journal of the Acoustical Society of America, 76, 676–681.

    Article  CAS  PubMed  Google Scholar 

  • Moss, C. F., & Simmons, A. M. (1986). Frequency selectivity of hearing in the green treefrog, Hyla cinerea. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 159, 257–266.

    Article  CAS  Google Scholar 

  • Narins, P. M. (1982). Effects of masking noise on evoked calling in the Puerto Rican coqui (Anura: Leptodactylidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 147, 439–446.

    Article  Google Scholar 

  • Narins, P. M. (1987). Coding of signals in noise by amphibian auditory nerve fibers. Hearing Research, 26, 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Narins, P. M., & Zelick, R. (1988). The effects of noise on auditory processing and behavior in amphibians. In B. Fritszch, M. J. Ryan, W. Wilczynski, T. Hetherington, & W. Walkowiak (Eds.), The Evolution of the Amphibian Auditory System (pp. 511–536). New York: John Wiley.

    Google Scholar 

  • Narins, P. M., & Wagner, I. (1989). Noise susceptibility and immunity of phase locking in amphibian auditory-nerve fibers. The Journal of the Acoustical Society of America, 85, 1255–1265.

    Article  CAS  PubMed  Google Scholar 

  • Narins, P. M., & Clark, G. A. (2016). Principles of matched filtering with auditory examples from selected vertebrates. In G. von der Emde & E. Warrant (Eds.), The Ecology of Animal Senses: Matched Filtering for Economical Sensing (pp. 111–140). Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Narins, P. M., Feng, A. S., Schnitzler, H.-U., Denzinger, A., Suthers, R. A., Lin, W., & Xu, C.-H. (2004). Old World frog and bird vocalizations contain prominent ultrasonic harmonics. The Journal of the Acoustical Society of America, 115, 910–913.

    Article  PubMed  Google Scholar 

  • Narins, P. M., Wilson, M., & Mann, D. A. (2014). Ultrasound detection in fishes and frogs: Discovery and mechanisms. In C. Köppl, G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Insights from Comparative Hearing Research (pp. 133–156). New York: Springer-Verlag.

    Google Scholar 

  • Narins, P. M., Stoeger-Horwath, A. & O’Connell-Rodwell, C. (2016). Infrasound and seismic communication in the vertebrates with special emphasis on the Afrotheria: An update and future directions. In R. A. Suthers, W. T. Fitch, R. R. Fay, & A. N. Popper (Eds.), Vertebrate Sound Production and Acoustic Communication (pp. 191–228). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Nelson, D. V., Klinck, H., Carbaugh-Rutland, A., Mathis, C. L., Morzillo, A. T., & Garcia, T. S. (2017). Calling at the highway: The spatiotemporal constraint of road noise on Pacific chorus frog communication. Ecology and Evolution, 7, 429–440. https://doi.org/10.1002/ece3.2622.

    Article  PubMed  Google Scholar 

  • Parris, K. M., Velik-Lord, M., & North, J. M. A. (2009). Frogs call at a higher pitch in traffic noise. Ecology and Society, 14, 25. Available at http://www.ecologyandsociety.org/vol14/iss1/art25/.

  • Pechmann, J. H. K., Scott, D. E., Semlitsch, R. D., Caldwell, J. P., Vitt, L. J., & Gibbons, J. W. (1991). Declining amphibian populations: The problem of separating human impacts from natural fluctuations. Science, 253, 892–895.

    Article  CAS  PubMed  Google Scholar 

  • Penna, M., & Zúñiga, D. (2014). Strong responsiveness to noise interference in an anuran from the southern temperate forest. Behavioral Ecology and Sociobiology, 68, 85–97.

    Article  Google Scholar 

  • Penna, M., Pottstock, H., & Velásquez, N. (2005). Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Animal Behaviour, 70, 639–651.

    Article  Google Scholar 

  • Popper A. N., Hawkins, A. D., Fay, R. R., Mann, D. A., Bartol, S., Carlson, T. J., Coombs, S., Ellison, W. T., Gentry, R. L., Halvorsen, M. B., Lokkeborg, S., Rogers, P., Southall, B. L., Zeddies, D. G., & Tavolga, W. N. (2014). ASA S3/SC1. 4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI. New York: Springer International Publishing.

    Google Scholar 

  • Schwartz, J. J., & Wells, K. D. (1983a). An experimental study of acoustic interference between two species of neotropical treefrogs. Animal Behaviour, 31, 181–190.

    Article  Google Scholar 

  • Schwartz, J. J., & Wells, K. D. (1983b). The influence of background noise on the behavior of a neotropical treefrog, Hyla ebraccata. Herpetologica, 39, 121–192.

    Google Scholar 

  • Schwartz, J. J., & Gerhardt, H. C. (1989). Spatially mediated release from masking in an anuran amphibian. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 166, 37–41.

    Article  Google Scholar 

  • Schwartz, J. J., & Gerhardt, H. C. (1998). The neuroethology of frequency preferences in the spring peeper. Animal Behaviour, 56, 55–69.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, J. J., & Bee, M. A. (2013). Anuran acoustic signal production in noisy environments. In H. Brumm (Ed.), Animal Communication and Noise (pp. 91–132). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Schwartz, J. J., Buchanan, B. W., & Gerhardt, H. C. (2001). Female mate choice in the gray treefrog (Hyla versicolor) in three experimental environments. Behavioral Ecology and Sociobiology, 49, 443–455.

    Article  Google Scholar 

  • Shen, J.-X., Xu, Z.-M., Feng, A., and Narins, P. M. (2011). Large odorous frogs (Odorrana graminea) produce ultrasonic calls. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 1027–1030. https://doi.org/10.1007/s00359-011-0660-7.

    Article  PubMed  Google Scholar 

  • Simmons, A. M. (1988). Masking patterns in the bullfrog (Rana catesbeiana). I: Behavioral effects. The Journal of the Acoustical Society of America, 83, 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, A. M., Schwartz, J. J., & Ferragamo, M. (1992). Auditory nerve representation of a complex communication sound in background noise. The Journal of the Acoustical Society of America, 91, 2831–2844.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J. W. C., & Narins, P. M. (2005). Anthropogenic sounds differentially affect amphibian call rate. Biological Conservation, 121, 419–427.

    Article  Google Scholar 

  • Tennessen, J. B., Parks, S. E., & Langkilde, T. (2014). Traffic noise causes physiological stress and impairs breeding migration behavior in frogs. Conservation Physiology, 2, cou032. https://doi.org/10.1093/conphys/cou032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vargas-Salinas, F., & Amézquita, A. (2013). Traffic noise correlates with calling time but not spatial distribution in the threatened poison frog Adinobates bombetes. Behaviour, 150, 569–584.

    Article  Google Scholar 

  • Vargas-Salinas, F., Cunnington, G. M., Amézquita, A., & Fahrig, L. (2014). Does traffic noise alter calling time in frogs and toads? A case study of anurans in eastern Ontario, Canada. Urban Ecosystems, 17, 945–953.

    Article  Google Scholar 

  • Velez, A., Schwartz, J. J., & Bee, M. A. (2013). Anuran acoustic signal perception in noisy environments. In H. Brumm (Ed.), Animal Communication and Noise (pp. 133–185). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Vergne, A. L., Pritz, M. B., & Mathevon, N. (2009). Acoustic communication in crocodilians: From behaviour to brain. Biological Reviews, 84, 391–411.

    Article  CAS  PubMed  Google Scholar 

  • Wollerman, L., & Wiley, H. (2002). Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. Animal Behaviour, 63, 15–22.

    Article  Google Scholar 

  • Zelick, R., & Narins, P. M. (1983). Intensity discrimination and the precision of call timing in two species of neotropical treefrogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,153, 403–412.

    Article  Google Scholar 

  • Zelick, R., & Narins, P. M. (1985). Characterization of the advertisement call oscillator in the frog Eleutherodactylus coqui. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,156, 223–229.

    Article  Google Scholar 

Download references

Compliance with Ethics Requirements

Andrea M. Simmons declares that she has no conflict of interest.

Peter M. Narins declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Megela Simmons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simmons, A.M., Narins, P.M. (2018). Effects of Anthropogenic Noise on Amphibians and Reptiles. In: Slabbekoorn, H., Dooling, R., Popper, A., Fay, R. (eds) Effects of Anthropogenic Noise on Animals. Springer Handbook of Auditory Research, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8574-6_7

Download citation

Publish with us

Policies and ethics