Skip to main content

Multi-Grid Schemes for Multi-Scale Coordination of Energy Systems

  • Chapter
  • First Online:
Book cover Energy Markets and Responsive Grids

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 162))

Abstract

We discuss how multi-grid computing schemes can be used to design hierarchical coordination architectures for energy systems. These hierarchical architectures can be used to manage multiple temporal and spatial scales and mitigate fundamental limitations of centralized and decentralized architectures. We present the basic elements of a multi-grid scheme, which includes a smoothing operator (a high-resolution decentralized coordination layer that targets phenomena at high frequencies) and a coarsening operator (a low-resolution centralized coordination layer that targets phenomena at low frequencies). For smoothing, we extend existing convergence results for Gauss-Seidel schemes by applying them to systems that cover unstructured domains. This allows us to target problems with multiple timescales and arbitrary networks. The proposed coordination schemes can be used to guide transactions in decentralized electricity markets. We present a storage control example and a power flow diffusion example to illustrate the developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albersmeyer J, Diehl M (2010) The lifted newton method and its application in optimization. SIAM J Optim 20(3):1655–1684

    Article  MathSciNet  Google Scholar 

  2. Antoulas AC, Sorensen DC, Gugercin S (2001) A survey of model reduction methods for large-scale systems. Contemp Math 280:193–220

    Article  MathSciNet  Google Scholar 

  3. Arnold M, Negenborn R, Andersson G, De Schutter B (2010) Distributed predictive control for energy hub coordination in coupled electricity and gas networks. In: Intelligent Infrastructures. Springer, Berlin, pp 235–273

    Chapter  Google Scholar 

  4. Baldea M, Daoutidis P (2007) Control of integrated process networks multi-time scale perspective. Comput Chem Eng 31(5):426–444

    Article  Google Scholar 

  5. Biegler LT, Zavala VM (2009) Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Comput Chem Eng 33(3):575–582

    Article  Google Scholar 

  6. Borzì A, Kunisch K (2005) A multigrid scheme for elliptic constrained optimal control problems. Comput Optim Appl 31(3):309–333

    Article  MathSciNet  Google Scholar 

  7. Borzì A, Schulz V (2009) Multigrid methods for PDE optimization. SIAM Rev 51(2):361–395 (2009)

    Article  MathSciNet  Google Scholar 

  8. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  9. Brandt A (1986) Algebraic multigrid theory: the symmetric case. Appl Math Comput 19(1):23–56

    MathSciNet  MATH  Google Scholar 

  10. Camponogara E, Jia D, Krogh BH, Talukdar S (2002) Distributed model predictive control. IEEE Control. Syst. 22(1):44–52

    Article  Google Scholar 

  11. Chow JH, Kokotovic PV (1985) Time scale modeling of sparse dynamic networks. IEEE Trans Autom Control 30(8):714–722

    Article  Google Scholar 

  12. Diehl M, Bock HG, Schlöder JP, Findeisen R, Nagy Z, Allgöwer F (2002) Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J Process Control 12(4):577–585

    Article  Google Scholar 

  13. Farina M, Zhang X, Scattolini R (Preprint, 2017) A hierarchical MPC scheme for interconnected systems. arXiv:1703.02739

    Google Scholar 

  14. Fisher ML (2004) The lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12 suppl.):1861–1871

    Article  Google Scholar 

  15. Giselsson P, Doan MD, Keviczky T, De Schutter B, Rantzer A (2013) Accelerated gradient methods and dual decomposition in distributed model predictive control. Automatica 49(3):829–833

    Article  MathSciNet  Google Scholar 

  16. Hong M, Luo ZQ (Preprint, 2012) On the linear convergence of the alternating direction method of multipliers. arXiv:1208.3922

    Google Scholar 

  17. Jamshidi M, Tarokh M, Shafai B (1992) Computer-aided analysis and design of linear control systems. Prentice-Hall, Inc., Upper Saddle River

    MATH  Google Scholar 

  18. Joo JY, Ilic MD (2013) Multi-layered optimization of demand resources using lagrange dual decomposition. IEEE Trans Smart Grid 4(4):2081–2088

    Article  Google Scholar 

  19. Kokotovic P (1981) Subsystems, time scales and multimodeling. Automatica 17(6):789–795

    Article  Google Scholar 

  20. Kokotovic P, Avramovic B, Chow J, Winkelman J (1982) Coherency based decomposition and aggregation. Automatica 18(1):47–56

    Article  Google Scholar 

  21. Kozma A, Frasch JV, Diehl M (2013) A distributed method for convex quadratic programming problems arising in optimal control of distributed systems. In: 2013 IEEE 52nd annual conference on decision and control (CDC). IEEE, New York, pp 1526–1531

    Google Scholar 

  22. Lefort A, Bourdais R, Ansanay-Alex G, Guéguen H (2013) Hierarchical control method applied to energy management of a residential house. Energ Buildings 64:53–61

    Article  Google Scholar 

  23. Liu C, Shahidehpour M, Wang J (2010) Application of augmented lagrangian relaxation to coordinated scheduling of interdependent hydrothermal power and natural gas systems. IET Gener Transm Distrib 4(12):1314–1325

    Article  Google Scholar 

  24. Negenborn RR, De Schutter B, Hellendoorn J (2007) Efficient implementation of serial multi-agent model predictive control by parallelization. In: 2007 IEEE international conference on networking, sensing and control. IEEE, New York, pp 175–180

    Chapter  Google Scholar 

  25. Peponides GM, Kokotovic PV (1983) Weak connections, time scales, and aggregation of nonlinear systems. IEEE Trans Autom Control 28(6):729–735

    Article  MathSciNet  Google Scholar 

  26. Rawlings JB, Mayne D (2008) Model predictive control. Noble Hill Publishing, Madison

    Google Scholar 

  27. Rawlings JB, Bonné D, Jørgensen JB, Venkat AN, Jørgensen SB (2008) Unreachable setpoints in model predictive control. IEEE Trans Autom Control 53(9):2209–2215

    Article  MathSciNet  Google Scholar 

  28. Scattolini R (2009) Architectures for distributed and hierarchical model predictive control–a review. J Process Control 19(5):723–731

    Article  Google Scholar 

  29. Scattolini R, Colaneri P (2007) Hierarchical model predictive control. In: 2007 46th IEEE conference on decision and control. IEEE, New York, pp 4803–4808

    Google Scholar 

  30. Simon HA, Ando A (1961) Aggregation of variables in dynamic systems. Econometrica 29(2):111–138

    Article  Google Scholar 

  31. Stewart BT, Venkat AN, Rawlings JB, Wright SJ, Pannocchia G (2010) Cooperative distributed model predictive control. Syst Control Lett 59(8):460–469

    Article  MathSciNet  Google Scholar 

  32. Stewart BT, Wright SJ, Rawlings JB (2011) Cooperative distributed model predictive control for nonlinear systems. J Process Control 21(5):698–704

    Article  Google Scholar 

  33. Summers TH, Lygeros J (2012) Distributed model predictive consensus via the alternating direction method of multipliers. In: 2012 50th annual Allerton conference on communication, control, and computing (Allerton). IEEE, New York, pp 79–84

    Google Scholar 

  34. Zavala VM (2016) New architectures for hierarchical predictive control. IFAC-PapersOnLine 49(7):43–48

    Article  MathSciNet  Google Scholar 

  35. Zavala VM, Anitescu M (2010) Real-time nonlinear optimization as a generalized equation. SIAM J Control Optim 48(8):5444–5467

    Article  MathSciNet  Google Scholar 

  36. Zavala VM, Biegler LT (2009) The advanced-step NMPC controller: optimality, stability and robustness. Automatica 45(1):86–93

    Article  MathSciNet  Google Scholar 

  37. Zhu D, Yang R, Hug-Glanzmann, G (2010) Managing microgrids with intermittent resources: a two-layer multi-step optimal control approach. In: North American power symposium (NAPS). IEEE, New York, pp 1–8

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Science Foundation under award NSF-EECS-1609183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Zavala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shin, S., Zavala, V.M. (2018). Multi-Grid Schemes for Multi-Scale Coordination of Energy Systems. In: Meyn, S., Samad, T., Hiskens, I., Stoustrup, J. (eds) Energy Markets and Responsive Grids. The IMA Volumes in Mathematics and its Applications, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7822-9_9

Download citation

Publish with us

Policies and ethics