Skip to main content

Cystic Kidney Diseases Associated with Increased Cancer Risk: Tuberous Sclerosis Complex, Von Hippel-Lindau, and Birt-Hogg-Dubé

  • Chapter
  • First Online:
Polycystic Kidney Disease

Abstract

Tuberous sclerosis complex, von Hippel-Lindau disease, and Birt-Hogg-Dubé disease are tumor predisposition syndromes associated with renal cystic disease. While better known for their benign and malignant tumor associations, these disease-associated proteins all have a strong mechanistic link to the mTORC1 pathway and primary cilia signaling. The clinical, basic, and translational science aspects are explored, and a common mechanism is posited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grantham JJ. Time to treat polycystic kidney diseases like the neoplastic disorders that they are. Kidney Int. 2000;57:339–40.

    Article  PubMed  CAS  Google Scholar 

  2. Siroky BJ, Czyzyk-Krzeska MF, Bissler JJ. Renal involvement in tuberous sclerosis complex and von Hippel-Lindau disease: shared disease mechanisms? Nat Clin Pr Nephrol. 2009;5:143–56.

    CAS  Google Scholar 

  3. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–56.

    Article  PubMed  CAS  Google Scholar 

  4. Yates JR. Tuberous sclerosis. Eur J Hum Genet. 2006;14:1065–73.

    Article  PubMed  CAS  Google Scholar 

  5. Curatolo P. The International Child Neurology Association: personal view. J Child Neurol. 2003;18:786–94.

    Article  PubMed  Google Scholar 

  6. Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics. 2010;41:199–208.

    Article  PubMed  CAS  Google Scholar 

  7. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75:1305–15.

    Article  Google Scholar 

  8. Henske EP, et al. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet. 1996;59:400–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Brasier JL, Henske EP. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest. 1997;99:194–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Giannikou K, et al. Whole exome sequencing identifies TSC1/TSC2 Biallelic loss as the primary and sufficient driver event for renal angiomyolipoma development. PLoS Genet. 2016;12:e1006242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Blaszak RT, Potaman V, Sinden RR, Bissler JJ. DNA structural transitions within the PKD1 gene. Nucleic Acids Res. 1999;27:2610–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Patel HP, Lu L, Blaszak RT, Bissler JJ. PKD1 intron 21: triplex DNA formation and effect on replication. Nucleic Acids Res. 2004;32:1460–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Liu G, et al. Replication fork stalling and checkpoint activation by a PKD1 locus mirror repeat Polypurine-Polypyrimidine (Pu-Py) tract. J Biol Chem. 2012;287:33412–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dixon BP, Lu L, Chu A, Bissler JJ. RecQ and RecG helicases have distinct roles in maintaining the stability of polypurine.polypyrimidine sequences. Mutat Res. 2008;643:20–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dixon BP, Chu A, Henry J, Kim R, Bissler JJ. Increased cancer risk of augmentation cystoplasty: possible role for hyperosmolal microenvironment on DNA damage recognition. Mutat Res. 2009;670:88–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dixon BP, et al. Cell cycle control and DNA damage response of conditionally immortalized urothelial cells. PLoS One. 2011;6:e16595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bissler JJ, Kingswood JC. Optimal treatment of tuberous sclerosis complex associated renal angiomyolipomata: a systematic review. Ther Adv Urol. 2016:1–12. https://doi.org/10.1177/1756287216641353.

  18. Nikolskaya N, Cox JA, Kingswood JC. TSC patients with different renal phenotypes. In: Nephrology dialysis transplantation. ERA-EDTA Congress, Amsterdam, Netherlands. 2014.

    Google Scholar 

  19. Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schwartz GJ, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nehus EJ, Laskin BL, Kathman TI, Bissler JJ. Performance of cystatin C-based equations in a pediatric cohort at high risk of kidney injury. Pediatr Nephrol. 2013;28:453–61.

    Article  PubMed  Google Scholar 

  22. Dere R, Wilson PD, Sandford RN, Walker CL. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS One. 2010;5:e9239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bell PD, et al. Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol. 2011;22:839–48.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Boehlke C, et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol. 2010;12:1115–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zheng B, Cantley LC. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci U S A. 2007;104:819–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Willemarck N, et al. Aberrant activation of fatty acid synthesis suppresses primary cilium formation and distorts tissue development. Cancer Res. 2010;70:9453–62.

    Article  PubMed  CAS  Google Scholar 

  27. Fiorentino M, et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab Investig. 2008;88:1340–8.

    Article  PubMed  CAS  Google Scholar 

  28. Li Y, et al. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene. 2011;30:2633–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hartman TR, et al. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 2009;18:151–63.

    Article  PubMed  CAS  Google Scholar 

  30. Dibella LM, Park A, Sun Z. Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet. 2008;18:595–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Astrinidis A, Senapedis W, Henske EP. Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum Mol Genet. 2006;15:287–97.

    Article  PubMed  CAS  Google Scholar 

  32. Ji H, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448:807–10.

    Article  PubMed  CAS  Google Scholar 

  33. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci. 2010;67:1025–48.

    Article  PubMed  CAS  Google Scholar 

  34. Siroky BJ, et al. Evidence for pericyte origin of TSC-associated renal angiomyolipomas and implications for angiotensin receptor inhibition therapy. Am J Physiol Ren Physiol. 2014;307:F560–70.

    Article  CAS  Google Scholar 

  35. Schrier RW, et al. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371:2255–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ong ACM, Devuyst O, Knebelmann B, Walz G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet. 2015;385:1993–2002.

    Article  PubMed  Google Scholar 

  37. Patel U, Simpson E, Kingswood JC, Saggar-Malik AK. Tuberose sclerosis complex: analysis of growth rates aids differentiation of renal cell carcinoma from atypical or minimal-fat-containing angiomyolipoma. Clin Radiol. 2005;60:664–5.

    Google Scholar 

  38. Ho C-L, et al. Dual-tracer PET/CT in renal angiomyolipoma and subtypes of renal cell carcinoma. Clin Nucl Med. 2012;37:1075–82.

    Article  PubMed  Google Scholar 

  39. Dabora SL, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet. 2001;68:64–80.

    Article  PubMed  CAS  Google Scholar 

  40. Ewalt DH, Sheffield E, Sparagana SP, Delgado MR, Roach ES. Renal lesion growth in children with tuberous sclerosis complex. J Urol. 1998;160:141–5.

    Article  PubMed  CAS  Google Scholar 

  41. Rakowski SK, et al. Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int. 2006;70:1777–82.

    Article  PubMed  CAS  Google Scholar 

  42. Bissler JJ, Siroky BJ, Yin H. Glomerulocystic kidney disease. Pediatr Nephrol. 2010;25:2049.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dixon BP, Hulbert JC, Bissler JJ. Tuberous sclerosis complex renal disease. Nephron Exp Nephrol. 2011;118:e15–20.

    Article  PubMed  Google Scholar 

  44. Sampson JR, et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet. 1997;61:843–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Brook-Carter PT, et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease – a contiguous gene syndrome. Nat Genet. 1994;8:328–32.

    Article  PubMed  CAS  Google Scholar 

  46. Terryn S, Ho A, Beauwens R, Devuyst O. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta. 2011;1812:1314–21.

    Article  PubMed  CAS  Google Scholar 

  47. Patel V, et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet. 2008;17:1578–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. de Chadarevian JP, Legido A, Miles DK, Katsetos CD. Epilepsy, atherosclerosis, myocardial infarction, and carbamazepine. J Child Neurol. 2003;18:150–1.

    Article  PubMed  Google Scholar 

  49. Maher ER, et al. Von Hippel-Lindau disease: a genetic study. J Med Genet. 1991;28:443–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Richards FM, et al. Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet. 1995;4:2139–43.

    Article  PubMed  CAS  Google Scholar 

  51. Von Maher ER. Hippel-Lindau disease. Curr Mol Med. 2004;4:833–42.

    Article  PubMed  CAS  Google Scholar 

  52. Clifford SC, et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 2001;10:1029–38.

    Article  PubMed  CAS  Google Scholar 

  53. Choyke PL, et al. von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology. 1995;194:629–42.

    Article  PubMed  CAS  Google Scholar 

  54. Mandriota SJ, et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell. 2002;1:459–68.

    Article  PubMed  CAS  Google Scholar 

  55. Ma W, et al. Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res. 2003;63:5320–8.

    PubMed  CAS  Google Scholar 

  56. Haase VH, Glickman JN, Socolovsky M, Jaenisch R. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci U S A. 2001;98:1583–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 2006;66:2576–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jemal A, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.

    Article  PubMed  Google Scholar 

  59. Czyzyk-Krzeska MF, von Meller J. Hippel-Lindau tumor suppressor: not only HIF’s executioner. Trends Mol Med. 2004;10:146–9.

    Article  PubMed  CAS  Google Scholar 

  60. Kaelin WG. Proline hydroxylation and gene expression. Annu Rev Biochem. 2005;74:115–28.

    Article  PubMed  CAS  Google Scholar 

  61. Kaelin WGJ. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002;2:673–82.

    Article  PubMed  CAS  Google Scholar 

  62. Gunaratnam L, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem. 2003;278:44966–74.

    Article  PubMed  CAS  Google Scholar 

  63. Smith K, et al. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. Cancer Res. 2005;65:5221–30.

    Article  PubMed  CAS  Google Scholar 

  64. An J, Rettig MB. Mechanism of von Hippel-Lindau protein-mediated suppression of nuclear factor kappa B activity. Mol Cell Biol. 2005;25:7546–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Qi H, Ohh M. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res. 2003;63:7076–80.

    PubMed  CAS  Google Scholar 

  66. Jermann M, et al. A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother Pharmacol. 2006;57:533–9.

    Article  PubMed  CAS  Google Scholar 

  67. Perera AD, Kleymenova EV, Walker CL. Requirement for the von Hippel-Lindau tumor suppressor gene for functional epidermal growth factor receptor blockade by monoclonal antibody C225 in renal cell carcinoma. Clin Cancer Res. 2000;6:1518–23.

    PubMed  CAS  Google Scholar 

  68. Lolkema MP, et al. The von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery. Exp Cell Res. 2004;301:139–46.

    Article  PubMed  CAS  Google Scholar 

  69. Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol. 2003;5:64–70.

    Article  PubMed  CAS  Google Scholar 

  70. Schermer B, et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol. 2006;175:547–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lutz MS, Burk RD. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res. 2006;66:6903–7.

    Article  PubMed  CAS  Google Scholar 

  72. Esteban MA, Harten SK, Tran MG, Maxwell PH. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol. 2006;17:1801–6.

    Article  PubMed  CAS  Google Scholar 

  73. Thoma CR, Frew IJ, Krek W. The VHL tumor suppressor: riding tandem with GSK3beta in primary cilium maintenance. Cell Cycle. 2007;6:1809–13.

    Article  PubMed  CAS  Google Scholar 

  74. Frew IJ, et al. Combined Vhlh and Pten mutation causes genital tract cystadenoma and squamous metaplasia. Mol Cell Biol. 2008;28:4536–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kugoh H, Kleymenova E, Walker CL. Retention of membrane-localized beta-catenin in cells lacking functional polycystin-1 and tuberin. Mol Carcinog. 2002;33:131–6.

    Article  PubMed  CAS  Google Scholar 

  76. Huan Y, van Adelsberg J. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest. 1999;104:1459–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nickerson ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell. 2002;2:157–64.

    Article  PubMed  CAS  Google Scholar 

  78. Hasumi H, Baba M, Hasumi Y, Furuya M, Yao M. Birt-Hogg-Dubé syndrome: clinical and molecular aspects of recently identified kidney cancer syndrome. Int J Urol. 2015;23:11–3.

    Google Scholar 

  79. Tobino K, et al. Differentiation between Birt-Hogg-Dube syndrome and lymphangioleiomyomatosis: quantitative analysis of pulmonary cysts on computed tomography of the chest in 66 females. Eur J Radiol. 2012;81:1340–6.

    Article  PubMed  Google Scholar 

  80. Predina JD, Kotloff RM, Miller WT, Singhal S. Recurrent spontaneous pneumothorax in a patient with Birt-Hogg-Dube syndrome. Eur J Cardiothorac Surg. 2011;39:404–6.

    Article  PubMed  Google Scholar 

  81. Houweling AC, et al. Renal cancer and pneumothorax risk in Birt-Hogg-Dubé syndrome; an analysis of 115 FLCN mutation carriers from 35 BHD families. Br J Cancer. 2011;105:1912–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Toro JR, et al. Lung cysts, spontaneous pneumothorax, and genetic associations in 89 families with birt-Hogg-Dubé syndrome. Am J Respir Crit Care Med. 2007;175:1044–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zbar B, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dube syndrome. Cancer Epidemiol Biomark Prev. 2002;11:393–400.

    Google Scholar 

  84. Kumasaka T, et al. Characterization of pulmonary cysts in Birt-Hogg-Dube syndrome: histopathological and morphometric analysis of 229 pulmonary cysts from 50 unrelated patients. Histopathology. 2014;65:100–10.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Furuya M, et al. Pulmonary cysts of Birt-Hogg-Dube syndrome: a clinicopathologic and immunohistochemical study of 9 families. Am J Surg Pathol. 2012;36:589–600.

    Article  PubMed  Google Scholar 

  86. Furuya M, Nakatani Y. Birt-Hogg-Dube syndrome: clinicopathological features of the lung. J Clin Pathol. 2013;66:178–86.

    Article  PubMed  CAS  Google Scholar 

  87. Nishii T, et al. Unique mutation, accelerated mTOR signaling and angiogenesis in the pulmonary cysts of Birt-Hogg-Dubé syndrome. Pathol Int. 2013;63:45–55.

    Article  PubMed  CAS  Google Scholar 

  88. Koga S, et al. Lung cysts in Birt-Hogg-Dubé syndrome: histopathological characteristics and aberrant sequence repeats: original article. Pathol Int. 2009;59:720–8.

    Article  PubMed  CAS  Google Scholar 

  89. Pavlovich CP, et al. Evaluation and management of renal tumors in the Birt-Hogg-Dubé syndrome. J Urol. 2005;173:1482–6.

    Article  PubMed  Google Scholar 

  90. Toro JR, et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45:321–31.

    Article  PubMed  CAS  Google Scholar 

  91. Benusiglio PR, et al. Renal cell tumour characteristics in patients with the Birt-Hogg-Dubé cancer susceptibility syndrome: a retrospective, multicentre study. Orphanet J Rare Dis. 2014;9:163.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pavlovich CP, et al. Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol. 2002;26:1542–52.

    Article  PubMed  Google Scholar 

  93. Hasumi H, et al. Regulation of mitochondrial oxidative metabolism by tumor suppressor FLCN. J Natl Cancer Inst. 2012;104:1750–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Nagashima Y, et al. Renal oncocytosis. Pathol Int. 2005;55:210–5.

    Article  PubMed  Google Scholar 

  95. Kuroda N, et al. Review of renal tumors associated with Birt-Hogg-Dube syndrome with focus on clinical and pathobiological aspects. Pol J Pathol. 2014;65:93–9.

    Article  PubMed  CAS  Google Scholar 

  96. Kuroda N, et al. Review of renal oncocytosis (multiple oncocytic lesions) with focus on clinical and pathobiological aspects. Histol Histopathol. 2012;27:1407–12.

    PubMed  Google Scholar 

  97. Kuroda N, et al. Intratumoral peripheral small papillary tufts: a diagnostic clue of renal tumors associated with Birt-Hogg-Dub?? syndrome. Ann Diagn Pathol. 2014;18:171–6.

    Article  PubMed  Google Scholar 

  98. Chen J, et al. Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS One. 2008;3:e3581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Baba M, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A. 2006;103:15552–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Baba M, et al. Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst. 2008;100:140–54.

    Article  PubMed  CAS  Google Scholar 

  101. Hasumi H, et al. Folliculin-interacting proteins Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. Proc Natl Acad Sci U S A. 2015;112:E1624–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Baba M, et al. The folliculin-FNIP1 pathway deleted in human Birt-Hogg-Dubé syndrome is required for murine B-cell development. Blood. 2012;120:1254–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hasumi Y, et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci U S A. 2009;106:18722–7.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hartman TR, et al. The role of the Birt-Hogg-Dubé protein in mTOR activation and renal tumorigenesis. Oncogene. 2009;28:1594–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hudon V, et al. Renal tumour suppressor function of the Birt-Hogg-Dubé syndrome gene product folliculin. J Med Genet. 2010;47:182–9.

    Article  PubMed  CAS  Google Scholar 

  106. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123:499–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Singla V, Reiter JF. The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science. (80). 2006;313:629–33.

    Article  PubMed  CAS  Google Scholar 

  108. Pazour GJ, Witman GB. The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol. 2003;15:105–10.

    Article  PubMed  CAS  Google Scholar 

  109. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 2010;11:331–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Berbari NF, Connor AKO, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol. 2009;19:R526–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Huber TB, Walz G, Kuehn EW. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int. 2011;79:502–11.

    Article  PubMed  CAS  Google Scholar 

  112. Aznar N, Billaud M. Primary cilia bend LKB1 and mTOR to their will. Dev Cell. 2010;19:792–4.

    Article  PubMed  CAS  Google Scholar 

  113. Zhong M, et al. Tumor suppressor folliculin regulates mTORC1 through Primary Cilia. J Biol Chem. 2016;291:11689–97. https://doi.org/10.1074/jbc.M116.719997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Krueger DA, et al. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49:255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Khoo SK, et al. Clinical and genetic studies of Birt-Hogg-Dube syndrome. J Med Genet. 2002;39:906–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Jamis-Dow CA, et al. Small (< or = 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology. 1996;198:785–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Bissler MD, FAAP, FASN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bissler, J.J. (2018). Cystic Kidney Diseases Associated with Increased Cancer Risk: Tuberous Sclerosis Complex, Von Hippel-Lindau, and Birt-Hogg-Dubé. In: Cowley, Jr., B., Bissler, J. (eds) Polycystic Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7784-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7784-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7782-6

  • Online ISBN: 978-1-4939-7784-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics