Skip to main content

Rotating Hollow and Full Spheres: Einstein, Thirring, Lense, and Beyond

  • Chapter
  • First Online:

Part of the book series: Einstein Studies ((EINSTEIN,volume 14))

Abstract

Concrete calculations of (linear) dragging effects on test masses were performed by Einstein in the period 1912–1913 by introducing the model of an infinitely thin mass shell. Einstein’s impact on the subsequent work of Thirring and Lense from 1918 on the induction of gravitational dragging forces by accelerated (rotating) masses is revealed. Generalizations to strong fields were performed not earlier than in 1966 by Brill and Cohen. Extensions to higher orders of the angular velocity ω of rotation by Pfister and Braun (1985–1989) led to a solution of the “centrifugal force problem” and to a “quasiglobal principle of equivalence.” The present experimental status of dragging phenomena is shortly reviewed, and cosmological and Machian aspects of gravitomagnetism are discussed.

This contribution has been edited and updated by Markus King, University of Applied Sciences Albstadt-Sigmaringen, D-72458 Albstadt-Ebingen, Germany.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bass, L., & Pirani, F. A. E. (1955). On the gravitational effects of distant rotating masses. Philosophical Magazine, 46, 850–856.

    Google Scholar 

  • Bičák, J., Katz, J., Ledvinka, T., & Lynden-Bell, D. (2012). Effects of rotating gravitational waves. Physical Review, D85, 124003.

    Google Scholar 

  • Bičák, J., Lynden-Bell, D., & Katz, J. (2004). Do rotations beyond the cosmological horizon affect the local inertial frame? Physical Review, D69, 064011.

    Google Scholar 

  • Brans, C. (1962). Mach’s principle and a relativistic theory of gravitation. II. Physical Review, 125, 2194–2201.

    Article  MathSciNet  Google Scholar 

  • Brill, D. R., & Cohen, J. M. (1966). Rotating masses and their effect on inertial frames. Physical Review, 143, 1011–1015.

    Article  MathSciNet  Google Scholar 

  • Ciufolini, I., & Pavlis, E. (2004). A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature, 431, 958–960.

    Article  Google Scholar 

  • Ciufolini, I., Paolozzi, A., Pavlis, E. C., Koenig, R., Ries, J., Gurzadyan, V., et al. (2016). A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth’s dragging of inertial frames. The European Physical Journal, C76, 120.

    Google Scholar 

  • de la Cruz, V., & Israel, W. (1968). Spinning shell as a source of the Kerr metric. Physical Review, 170, 1187–1192.

    Article  Google Scholar 

  • Einstein, A. (1912a). Lichtgeschwindigkeit und Statik des Gravitationsfeldes. Annalen der Physik, 38, 355–369.

    Article  Google Scholar 

  • Einstein, A. (1912b). Zur Theorie des statischen Gravitationsfeldes. Annalen der Physik, 38, 443–458.

    Article  Google Scholar 

  • Einstein, A. (1912c). Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog ist? Vierteljahrschrift fürgerichtliche Medizin und öffentliches Sanitätswesen, 44, 37–40.

    Google Scholar 

  • Einstein, A. (1913). Zum gegenwärtigen Stande des Gravitationsproblems. Physikalische Zeitschrift, 14, 1249–1266.

    Google Scholar 

  • Einstein, A., & Grossmann, M. (1913). Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Leipzig und Berlin: Teubner.

    Google Scholar 

  • Everitt, C. W. F. , Buchman, S., DeBra D. B., Keiser, G. M., Lockhart, J. M., Muhlfelder, B., et al. (2001). Gravity Probe B: Countdown to launch. In C. Lämmerzahl, C. W. F. Everitt & F. W. Hehl (Eds.), Gyros, clocks, interferometers: Testing relativistic gravity in space. Lecture Notes in Physics (Vol. 562, pp. 52–82). Berlin: Springer.

    Google Scholar 

  • Everitt, C. W. F., DeBra, D. B., Parkinson, B. W., Turneaure, J. P., Conklin, J. W., Heifetz, M. I., et al. (2011). Gravity Probe B: Final results of a space experiment to test general relativity. Physical Review Letters, 106, 221101.

    Google Scholar 

  • Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time (p. 91). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hönl, H., & Maue, A. W. (1956). Über das Gravitationsfeld rotierender Massen. Zeitschrift für Physik, 144, 152–167.

    Google Scholar 

  • Klein, C. (1993). Rotational perturbations and frame dragging in a Friedmann universe. Classical and Quantum Gravity, 10, 1619–1631.

    Article  MathSciNet  Google Scholar 

  • Klein, M. J., Kox, A. J., & Schulmann, R. (1993). The collected papers of Albert Einstein (Vol. 5). Princeton: Princeton University Press.

    Google Scholar 

  • Klein, K. J., Kox, A. J., Renn, J., & Schulmann, R. (1995). The collected papers of Albert Einstein (Vol. 4). Princeton: Princeton University Press.

    Google Scholar 

  • Kogut, A., Hinshaw, G., & Banday, A. J. (1997). Limits to a global rotation and shear from the COBE DMR four-year sky maps. Physical Review, D55, 1901–1905.

    Article  Google Scholar 

  • Kovalevsky, J., Mueller, I. I., & Kolaczek, B., (Eds.). (1989). Reference frames in astronomy and geophysics. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Kovalevsky, J., Lindegren, L., Perryman, M. A. C., Hemenway, P. D., Johnston, K. J., Kislyuk, V. S., et al. (1997). The Hipparcos catalogue as a realization of the extragalactic reference frame. Astronomy and Astrophysics, 323, 620–633.

    Google Scholar 

  • Lanczos, K. (1923). Zum Rotationsproblem der allgemeinen Relativitätstheorie. Zeitschrift für Physik, 14, 204–219.

    Google Scholar 

  • Lense, J., & Thirring, H. (1918). Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 19, 156–163. [English translation in General Relativity and Gravitation, 16 (1984): 727–741].

    Google Scholar 

  • Lewis, S. M. (1980). Machian effects in nonasymptotically flat space-times. General Relativity and Gravitation, 12, 917–924.

    Article  Google Scholar 

  • Lynden-Bell, D., Katz, J., & Bičák, J. (1995). Mach’s principle from the relativistic constraint equations. Monthly Notices of the Royal Astronomical Society, 272, 150–160.

    Article  Google Scholar 

  • Mach, E. (1872). Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit (p. 48). Prag: Calve.

    Google Scholar 

  • Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation (p. 547). San Francisco: Freeman.

    Google Scholar 

  • Pfister, H. (1989). Rotating mass shells with flat interiors. Classical and Quantum Gravity, 6, 487–503.

    Article  MathSciNet  Google Scholar 

  • Pfister, H. (2007). On the history of the so-called Lense–Thirring effect. General Relativity and Gravitation, 39, 1735–1748.

    Article  MathSciNet  Google Scholar 

  • Pfister, H., & Braun, K. H. (1985). Induction of correct centrifugal force in a rotating mass shell. Classical and Quantum Gravity, 2, 909–918.

    Article  MathSciNet  Google Scholar 

  • Pfister, H., & Braun, K. H. (1986). A mass shell with flat interior cannot rotate rigidly. Classical and Quantum Gravity, 3, 335–345.

    Article  MathSciNet  Google Scholar 

  • Pfister, H., Frauendiener, J., & Hengge, S. (2005). A model for linear dragging. Classical and Quantum Gravity, 22, 4743–4761.

    Article  MathSciNet  Google Scholar 

  • Pfister, H., & King, M. (2002). Rotating charged mass shell: Dragging, antidragging, and the gyromagnetic ratio. Physical Review, D65, 084033.

    Google Scholar 

  • Pfister, H., & King, M. (2015). Inertia and gravitation: The fundamental nature and structure of space-time. Lecture Notes in Physics (Vol. 897). Heidelberg: Springer.

    Google Scholar 

  • Schmid, C. (2006). Cosmological gravitomagnetism and Mach’s principle. Physical Review, D74, 044031.

    MathSciNet  Google Scholar 

  • Schmid, C. (2009). Mach’s principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann–Robertson–Walker universes with K = ±1, 0). Physical Review, D79, 064007.

    Google Scholar 

  • Schücking, E. L. (June, 1996). Gravitation and inertia. Physics Today, 6, 58.

    Google Scholar 

  • Schulmann, R., Kox, A. J., Janssen, M., & Illy, J. (1998). The collected papers of Albert Einstein (Vol. 8). Princeton: Princeton University Press.

    Google Scholar 

  • Soergel-Fabricius, C. (1960). Thirring-Effekt im Einsteinkosmos. Zeitschrift für Physik, 159, 541–553.

    Article  MathSciNet  Google Scholar 

  • Stachel, J. (1980). Einstein and the rigidly rotating disk. In A. Held (Ed.), General relativity and gravitation (Vol. 1, pp. 48–62). New York: Plenum Press.

    Google Scholar 

  • Stedman, G. E. (1997). Ring-laser tests of fundamental physics and geophysics. Reports on Progress in Physics, 60, 615–688.

    Article  Google Scholar 

  • Thirring, H. (1917). Wirkung rotierender Massen. Notebook. Österr. Zentralbibliothek, Universität Wien.

    MATH  Google Scholar 

  • Thirring, H. (1918). Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 19, 33–39; erratum in Physikalische Zeitschrift 22 (1921): 29–30 [English translation in General Relativity and Gravitation, 16 (1984): 712–727].

    Google Scholar 

  • Thirring, H. (1966). Ernst Mach als Physiker. Almanach der Österreichischen Akademie der Wissenschaften, 116, 361–372.

    Google Scholar 

  • Weinberg, S. (1972). Gravitation and cosmology (p. 17). New York: Wiley.

    Google Scholar 

  • Wheeler, J. A. (1964). Mach’s principle as boundary condition for Einstein’s equations. In H. Y. Chiu & W. F. Hoffmann (Eds.), Gravitation and relativity (pp. 303–349). New York: Benjamin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Pfister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfister, H. (2018). Rotating Hollow and Full Spheres: Einstein, Thirring, Lense, and Beyond. In: Rowe, D., Sauer, T., Walter, S. (eds) Beyond Einstein. Einstein Studies, vol 14. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7708-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7708-6_5

  • Published:

  • Publisher Name: Birkhäuser, New York, NY

  • Print ISBN: 978-1-4939-7706-2

  • Online ISBN: 978-1-4939-7708-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics