Skip to main content

Problems with Modified Theories of Gravity, as Alternatives to Dark Energy

  • Chapter
  • First Online:
Beyond Einstein

Part of the book series: Einstein Studies ((EINSTEIN,volume 14))

Abstract

In this contribution to the conference “Beyond Einstein: Historical Perspectives on Geometry, Gravitation and Cosmology in the Twentieth Century,” we give a critical status report of attempts to explain the late accelerated expansion of the universe by modifications of general relativity. Our brief review of such alternatives to the standard cosmological model addresses mainly readers who have not pursued the vast recent literature on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, e.g., Copeland et al. (2006) and Straumann (2007) and references therein.

  2. 2.

    For an extensive review and literature, we refer to Sotiriou and Faraoni (2010).

  3. 3.

    If this transcendental equation has a solution, any vacuum solution of GR with the corresponding Λ is obviously a vacuum solution of (10.2).

  4. 4.

    Therefore, one expects that the Cauchy problem is well-posed. This is certainly the case for the vacuum theory, but with matter the problem is not completely settled; see Salgado (2006) and Salgado et al. (2008). In Salgado et al. (2008) two first-order strongly hyperbolic formulations of scalar-tensor theories are presented, which however do not include the exceptional case ω = −3∕2.

  5. 5.

    For symmetry reasons T μν has the form of an ideal fluid of T μν.

  6. 6.

    For a dynamical system analysis of this reconstruction, see Fay et al. (2007).

  7. 7.

    It turns out (Faraoni 2005) that the nonnegativity of the expression in (10.19) is the stability condition of the de Sitter spacetime with respect to small inhomogeneous perturbations of the f(R) model (without matter).

  8. 8.

    For a simplified discussion in the Einstein frame, see Capozziello and Tsujikawa (2008).

  9. 9.

    The effective potential is defined by \(\frac {\partial V_{\mathrm {eff}}}{\partial \phi }=-\frac {\kappa ^2}{3}\rho +\frac {1}{3}(2f-Rf')\).

  10. 10.

    Note that V (ϕ) is closely related to U in (10.11). It is easy to see that the de Sitter value for R is mapped to the value of ϕ, where V  takes its minimum.

  11. 11.

    This paper contains a discussion of a generic instability of Lagrangian systems in mechanics with higher derivatives that was discovered by Ostrogradski (1850).

  12. 12.

    This approach was actually first introduced by Einstein (1925). This is correctly stated in Pauli’s classical text on relativity (p. 215).

  13. 13.

    It is shown in Sotiriou (2006) that if the matter action is independent of Γ, the theory is dynamically equivalent to a Brans-Dicke theory with the special Brans-Dicke parameter − 3∕2, plus a potential term.

  14. 14.

    In Lanahan-Tremblay and Faraoni (2007), it is shown that the basic system of equations in vacuum cannot be rewritten as a system of only first order, since \(\square \phi \) cannot be eliminated, except of course if \(\square \phi =0\) (e.g., for the vacuum theory).

  15. 15.

    Especially from the evolution of linear cosmological perturbations for such models (Song et al. 2006; Lanahan-Tremblay and Faraoni 2007; Bean et al. 2007; Pogosian and Silvestri 2007).

References

  • Amendola, L., Gannouji, R., Polarski, D., & Tsujikawa, S. (2007). Conditions for the cosmological viability of f(R) dark energy models. Physical Review D, 75, 083504. arXiv:gr-qc/0612180.

    Google Scholar 

  • Appleby, S. A., & Battye, R. A. (2007). Do consistent F(R) models mimic general relativity plus Λ? Physical Letters B, 654, 7. arXiv:0705.3199 [astro-ph].

    Google Scholar 

  • Barausse, E., Sotiriou, T. P., & Miller, J. C. (2008a). A no-go theorem for polytropic spheres in Palatini f(R) gravity. Classical Quantum Gravity, 25, 062001. arXiv:gr-qc/0703132.

    Article  MathSciNet  Google Scholar 

  • Barausse, E., Sotiriou, T. P., & Miller, J. C. (2008b). Curvature singularities, tidal forces and viability of Palatini f(R) gravity. Classical Quantum Gravity, 25, 105008. arXiv:0712.1141.

    Google Scholar 

  • Bean, R., Bernat, D., Pogosian, L., Silvestri, A., & Trodden, M. (2007). Dynamics of linear perturbations in f(R) gravity. Physical Review D, 75, 064020. arXiv:astro-ph/0611321.

    Google Scholar 

  • Bertschinger, E., & Zukin, P. (2008). Distinguishing modified gravity from dark energy. Physical Review D, 78, 024015. arXiv:0801.2431 [astro-ph].

    Google Scholar 

  • Brax, Ph., van de Bruck, C. Davis, A.-C., Khoury, J., & Weltman, A. (2004). Chameleon dark energy. Physical Review D, 70, 123518. arXiv:astro-ph/04101103.

    Google Scholar 

  • Calcagni, G., de Carlos, B., & De Felice, A. (2006). Ghost conditions for Gauss-Bonnet cosmologies. Nuclear Physics B, 752, 404. arXiv:hep-th/0604201.

    Article  MathSciNet  Google Scholar 

  • Capozziello, S., & Tsujikawa, S. (2008). Solar system and equivalence principle constraints on f(R) gravity by chameleon approach. Physical Review D , 77, 107501. arXiv:0712.2268 [gr-qc].

    Google Scholar 

  • Caroll, S. M., De Felice, A., Duvvuri, V., Easson, D., Trodden, M., & Turner, M. S. (2005). Cosmology of generalized modified gravity models. Physical Review D, 70, 063513. arXiv:astro-ph/0410031.

    Google Scholar 

  • Chiba, T., Smith, T. L., & Erickcek, A. L. (2007). Solar system constraints to general f(R) gravity. Physical Review D, 75, 124014. arXiv:astro-ph/0611867.

    Google Scholar 

  • Copeland, E. J., Sami, M., & Tsujikawa S. (2006). Dynamics of dark energy. International Journal of Modern Physics D, 15, 1753. arXiv:hep-th/0603057.

    Article  MathSciNet  Google Scholar 

  • De Felice, A., Hindmarsh, M., & Trodden, M. (2006). Ghosts, instabilities, and superluminal propagation in modified gravity models. Journal of Cosmology and Astroparticle Physics, 0608, 005. arXiv:astro-ph/0604154.

    Article  MathSciNet  Google Scholar 

  • Einstein, A. (1925). Einheitliche Feldtheorie von Gravitation und Elektrizität. In S. B. Preuss. Akad. Wiss. (pp. 414–419). Hoboken: Wiley

    Google Scholar 

  • Faraoni, V. (2005). Modified gravity and the stability of de Sitter space. Physical Review D, 72, 061501(R). arXiv: gr-qc/0509008.

    Google Scholar 

  • Faulkner, T., Tegmark, M., Bunn, E. F., & Mao, Y. Constraining f(R) gravity as a scalar tensor theory. Physical Review D, 76, 063505. arXiv:astro-ph/0612569.

    Google Scholar 

  • Fay, S., Nesseris, R., & Perivolaropoulos, L. (2007). Can f(R) gravity theories mimic a ΛCDM cosmology? Physical Review D, 76, 063504. arXiv:gr-qc/0703006.

    Google Scholar 

  • Frolov, A. V. (2008). A singularity problem with f(R) dark energy. Physical Review Letters, 101, 061103. arXiv:0803.2500 [astro-ph].

    Google Scholar 

  • Hu, W. (2008). Parameterized post-Friedmann signatures of acceleration in the CMB. Physical Review D, 77, 103524. arXiv:0801.2433 [astro-ph].

    Google Scholar 

  • Hu W., & Sawicki, I. (2007). Models of f(R) cosmic acceleration that evade solar-system tests. Physical Review D, 76, 064004. arXiv:0705.1158 [astro-ph].

    Google Scholar 

  • Khoury, J., & Weltman, A. (2004a). Chameleon fields: Awaiting surprises for tests of gravity in space. Physical Review Letters, 93, 171104. arXiv:astro-ph/0309300.

    Google Scholar 

  • Khoury, J., & Weltman, A. (2004b). Chameleon cosmology. Physical Review D, 69, 044026. arXiv:astro-ph/0309411.

    Google Scholar 

  • Kobayashi, T., & Maeda, K. (2008). Relativistic stars in f(R) gravity, and absence thereof. Physical Review D, 78, 0644019. arXiv:0807.2503.

    Google Scholar 

  • Koivisto T., & Kurki-Suonio, H. (2006). Cosmological perturbations in the Palatini formulation of modified gravity. Classical Quantum Gravity, 23, 2355. arXiv:astro-ph/0509422.

    Article  MathSciNet  Google Scholar 

  • Lanahan-Tremblay, N., & Faraoni, V. (2007). The Cauchy problem of f(R) gravity. Classical Quantum Gravity, 24, 5667. arXiv:0709.4414.

    Article  MathSciNet  Google Scholar 

  • Maeda, K. i. (1989). Towards the Einstein-Hilbert action via conformal transformation. Physical Review D, 39, 3159.

    Article  MathSciNet  Google Scholar 

  • Navarro, I., & Van Acoleyen, K. (2007). f(R) actions, cosmic acceleration and local tests of gravity. Journal of Cosmology and Astroparticle Physics, 0702(022) (2007). arXiv:gr-qc/0611127.

    Google Scholar 

  • Ostrogradski, M. (1850). Memoire Academie St. Petersburg, Ser. VI (Vol. 4, pp. 385).

    Google Scholar 

  • Pauli, W. (1985–99). In K. von Meyenn (Ed.). Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. (Vol. 1–4). New York: Springer.

    Google Scholar 

  • Pogosian L., & Silvestri, A. (2007). The pattern of growth in viable f(R) cosmologies. Physical Review D, 77, 023503. arXiv:0709.0296.

    Google Scholar 

  • Salgado, M. (2006). Classical Quantum Gravity, 23, 4719 (2006).

    Google Scholar 

  • Salgado, M., Rio, D. M.-d. Alcubierre, M., & Nunez D. (2008). Physical Review D, 77, 104010. arXiv:0801.2372 [gr-qc].

    Google Scholar 

  • Song, Y., Sawicki, I., & Hu, W. (2006). The large scale structure of f(R) gravity. Physical Review D, 75, 064003. arXiv:astro-ph/0606286.

    Google Scholar 

  • Sotiriou, T. P. (2006). f(R) gravity and scalar-tensor theory. Classical Quantum Gravity, 23, 5117. arXiv:gr-qc/0604028.

    Article  MathSciNet  Google Scholar 

  • Sotiriou T. P., & Faraoni V. (2010). f(R) theories of gravity. Reviews of Modern Physics, 82, 451–497. arXiv:0805.1726 [gr-qc].

    Article  MathSciNet  Google Scholar 

  • Starobinsky, A. A. (2007). Disappearing cosmological constant in f(R) gravity. Jounal of Experimental and Theoretical Physics Letters, 86, 157. arXiv:0706.2041 [astro-ph].

    Article  Google Scholar 

  • Straumann, N. (2007). Dark energy. In Approaches to fundamental physics. In E. Seiler & I.-O. Stamatescu (Eds.), Lecture Notes in Physics (Vol. 721, pp. 327–397). Berlin: Springer.

    Google Scholar 

  • Velo, G., & Zwanziger, D. (1969a). Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential. Physical Review, 186, 1337–1341.

    Article  Google Scholar 

  • Velo, G., & Zwanziger, D. (1969b). Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Physical Review, 188, 2218–2222.

    Article  Google Scholar 

  • Whitt, B. (1984). Fourth order gravity as general relativity plus matter. Physics Letters B, 145, 176.

    Article  MathSciNet  Google Scholar 

  • Woodard, R. P. (2007). Avoiding dark energy with 1/R modifications of gravity. Lecture Notes in Physics, 720, 403. arXiv:astro-ph/0601672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Straumann, N. (2018). Problems with Modified Theories of Gravity, as Alternatives to Dark Energy. In: Rowe, D., Sauer, T., Walter, S. (eds) Beyond Einstein. Einstein Studies, vol 14. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7708-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7708-6_10

  • Published:

  • Publisher Name: Birkhäuser, New York, NY

  • Print ISBN: 978-1-4939-7706-2

  • Online ISBN: 978-1-4939-7708-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics