Skip to main content

Figures of Light in the Early History of Relativity (1905–1914)

  • Chapter
  • First Online:
Beyond Einstein

Part of the book series: Einstein Studies ((EINSTEIN,volume 14))

Abstract

Albert Einstein’s bold assertion of the form invariance of the equation of a spherical light wave with respect to inertial frames of reference (Einstein, Annalen der Physik 322:891–921) became, in the space of 6 years, the preferred foundation of his theory of relativity. Early on, however, Einstein’s universal light-sphere invariance was challenged on epistemological grounds by Henri Poincaré, who promoted an alternative demonstration of the foundations of relativity theory based on the notion of a light ellipsoid. A third figure of light, Hermann Minkowski’s lightcone also provided a new means of envisioning the foundations of relativity. Drawing in part on archival sources, this paper shows how an informal, international group of physicists, mathematicians, and engineers, including Einstein, Paul Langevin, Poincaré, Hermann Minkowski, Ebenezer Cunningham, Harry Bateman, Otto Berg, Max Planck, Max von Laue, A. A. Robb, and Ludwig Silberstein, employed figures of light during the formative years of relativity theory in their discovery of the salient features of the relativistic worldview.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For gradualist views of the acceptance of relativity theory see Hirosige (1968), Miller (1981), and Darrigol (1996, 2000).

  2. 2.

    On the assumption of linearity, see Brown (2005, 26), and for the kinematic background to Einstein’s first paper on relativity, see Martínez (2009). Einstein did not let kinematics decide the matter once and for all in 1905. In a letter of September 1918 written to his friend, the anti-relativist and political assassin Friedrich Adler, Einstein considered the global factor in the Lorentz transformation to be of an empirical nature, whose value had been determined (to Einstein’s satisfaction) by the results of certain electron-deflection experiments (Walter 2009, 213). Poincaré expressed his views to Lorentz by letter in May 1905; see Walter et al. (2007, §§ 38.4, 38.5).

  3. 3.

    On the compatibility argument, see Williamson (1977). Gaps in Einstein’s reasoning are apparent from a modern standpoint; see, for example, Kennedy (2005).

  4. 4.

    Sommerfeld to H.A. Lorentz, 26 Dec. 1907, in Kox (2008, § 165).

  5. 5.

    For an assessment of Baker’s rise to prominence among Cambridge geometers, see Barrow-Green and Gray (2006).

  6. 6.

    See McCrea (1978), and John Heilbron’s interview with Cunningham (Heilbron 1963).

  7. 7.

    A proponent of Einstein’s theory is understood here to be an individual seeking either to support or to extend any of the novel ideas contained in Einstein’s 1905 paper. On the British reception of relativity, see Goldberg (1970), Sánchez-Ron (1987), and Warwick (2003).

  8. 8.

    See Goldberg (1970), and Hunt (1986).

  9. 9.

    Cunningham noted a personal communication with Larmor, to the effect that while a proof of the Lorentz transformation’s validity for electron theory to second order of approximation in vc appeared in the latter’s Æther and Matter (Larmor 1900), Larmor had “known for some time that [the Lorentz transformation] was exact” (Cunningham 1907, 539).

  10. 10.

    Cunningham (1911) recalled this fact, without mentioning Neumann.

  11. 11.

    Cunningham’s conclusion agrees with that reached later by Fermi; see Rohrlich (2007, 17), Janssen and Mecklenburg (2006).

  12. 12.

    Cunningham (1907, 547). Both Cunningham and Planck failed to understand Bucherer’s theory, which allowed for closed links between electrons; see Darrigol (2000, 371).

  13. 13.

    According to Balàzs (1972), Bucherer’s remark shows that he was “confused about the basic problem of relativity,” in that he failed to “realize the connection of this problem with the Michelson-Morley experiment and its relation to the transformation laws.” Yet the Lorentz-FitzGerald contraction explains on its own the null result of the Michelson-Morley experiment, as Bucherer and contemporary theorists knew quite well.

  14. 14.

    See Einstein (1907, § 3); reed. in Stachel et al. (1989, vol. 2, Doc. 47). Cunningham’s paper appeared in the October 1907 issue of the Philosophical Magazine, and Einstein’s review article was submitted for publication in Johannes Stark’s Jahrbuch der Radioaktivität und Elektronik on 4 December 1907.

  15. 15.

    An alternative approach, advanced by Born (1909), involved redefining the notion of a rigid body in Minkowski spacetime. On related developments, see Maltese and Orlando (1995).

  16. 16.

    Sommerfeld insisted in his lectures on electrodynamics that a Lorentz transformation does not change a “Lichtkugel” into a “Lichtellipsoid” (Sommerfeld 1948, 236).

  17. 17.

    See the edition of Henri Vergne’s notes of Poincaré’s 1906–1907 lectures at the Paris Faculty of Science (Poincaré 1953) and his 1912 lectures at the École supérieure des postes et télégraphes (Poincaré 1913), along with the two articles (Poincaré 1908a, 1909). The article of 1908 was reedited by Poincaré in Science et méthode (Poincaré 1908b); the light ellipse is described on p. 239, but the diagram was suppressed from this version, presumably by the editor, Gustave Le Bon.

  18. 18.

    See Lémeray (1912), communicated to the Paris Academy of Sciences on 9 December 1912 and the retraction (ibid., p. 1572). It is not clear whether Lémeray meant to attribute a flattened light ellipsoid or an elongated light ellipsoid to Einstein. Several years later, the Swiss physicist Édouard Guillaume (1921) referred to an “ellipsoïde de Poincaré.” Guillaume corresponded with Einstein on this topic; see Kormos Buchwald et al. (2006, Doc. 241).

  19. 19.

    See Langevin’s notes of Poincaré’s lectures, Fonds Langevin, box 123, Bibliothèque de l’École supérieure de physique et de chimie industrielle, Paris.

  20. 20.

    For details on Langevin’s paper, see Miller (1973).

  21. 21.

    See Langevin’s notebook, box 123, and letter to his wife of 26 September 1904, box 3, Fonds Langevin, Library of the École supérieure de physique et de chimie industrielle, Paris.

  22. 22.

    On Hertz’s solution, see Darrigol (2000, 251).

  23. 23.

    Henri Vergne, notebook 2, François Viète Center, University of Nantes.

  24. 24.

    Poincaré’s fantasy was extended by Tolman (1914) via dimensional analysis, in the form of a “principle of similitude,” a view that attracted sharp criticism from Bridgman (1916).

  25. 25.

    The notion of an absolutely resting frame remained an abstraction for Poincaré. In 1912, he upheld the conventionality of spacetime and expressed a preference for Galilei spacetime over Minkowski spacetime (Walter 2009).

  26. 26.

    See Poincaré (1901, 536), where the value is off by a factor of ten. In a later essay, Poincaré (1904, 312) supplied the “correct” value of the correction factor α for terrestrial observers and an ether at rest with respect to the Sun, where α = ( − ℓ′)∕ = 1 − γ −1.

  27. 27.

    The published version of the notes differs markedly from the original, suggesting that their editor, the astronomer Marguerite Chopinet, disagreed with their content; cf. Poincaré (1953, 219).

  28. 28.

    “Alors je prends une surface rigoureusement spherique. Je la mesure avec mon mètre: dans la direction du mouvement mon mètre sera contracté de α; sa longueur vraie sera devenue 1∕α. Donc mon diamètre dans le sens du mouvement aura pour longueur mesurée α. Dans le sens perpendiculaire la longueur mesurée sera 1. Donc une sphère paraîtra un ellipsoïde allongé dans le sens du mouvement.”

  29. 29.

    Using the relations specified in Figure 1.2, we have

    $$\displaystyle \begin{aligned} a(1 - e^2) = a(1 - (1 - b^2/a^2)) = a(1 - (1 - c^2 t^2/a^2)) = ac^2 t^2/a^2 = ct/\gamma. \end{aligned}$$

    Rearranging the latter expression in terms of t, we find t = (1 − e 2)∕c, and substituting the value of a(1 − e 2) from (1.4), we obtain Poincaré’s expression (1.5) for apparent time t′.

  30. 30.

    The context of Poincaré’s invitation to Göttingen is discussed in Walter (2018).

  31. 31.

    On Poincaré’s engagement with electrotechnology, and wireless telegraphy in particular, see Galison (2003), Gray (2013), and Walter (2017).

  32. 32.

    One may wonder why the watch in Poincaré’s thought experiment runs fast, and not slow, as would be required by time dilation in an Einsteinian or Minkowskian context. An explanation is at hand, if we focus on the first observer’s experience. At first, he believes he has a certain velocity, say 200 km/s. An exchange of telemetry data with the second observer convinces him that he is moving slower than he thought previously. One way for him to account for this revision is to admit that his watch is running fast. Other explanations for the fast watch can be imagined; see Walter (2014).

  33. 33.

    “…un théorème de géométrie très simple montre que le temps apparent que la lumière mettra à aller de A en B, c’est-à-dire la différence entre le temps local en A au moment du départ de A, et le temps local en B au moment de l’arrivée en B, que ce temps apparent, dis-je, est le même que si la translation n’existait pas, ce qui est bien conforme au principe de relativité.”

  34. 34.

    An excerpt of the Revue article was included in Poincaré’s Science et méthode (Poincaré 1908b), neglecting mathematical details, such as Poincaré’s discussion of relative velocity.

  35. 35.

    For a sketch of the French reception of relativity, see Walter (2011).

  36. 36.

    Despite Lorentz’s embrace of what Louis du Pasquier called the “principle of light-wave sphericity,” the Swiss mathematician later wrote that Lorentz rejected this principle (Du Pasquier 1922, 68).

  37. 37.

    On Guillaume’s collaboration with Einstein, see Einstein’s letter to Jacob Laub, 20 March 1909, in Klein et al. (1993, Doc. 143).

  38. 38.

    A displacement from one point to another on the light ellipse corresponds to a Lorentz transformation in this interpretation. The radii from a focus to any two points of the ellipse are related by a rotation and, in general, a dilation or a contraction.

  39. 39.

    On Poincaré’s models of hyperbolic geometry, see Gray (1989) and Zahar (1997).

  40. 40.

    For background, see Walter (1999a, 2008).

  41. 41.

    On the rise of Göttingen as a scientific center, see Manegold (1970) and Rowe (1989).

  42. 42.

    See Frank (1947, 206). Miller (1976, 918) emphasizes the relative simplicity of the mathematical tools deployed by Einstein in his relativity paper, in comparison to those Poincaré brought to bear on similar problems. Renn (2007, 69) observes that Einstein’s uncanny aptitude for informal analysis of complex problems served him well in both special and general relativity.

  43. 43.

    Minkowski’s visually intuitive approach to relativity is explored at length by Galison (1979).

  44. 44.

    On Minkowski’s use of hyperbolic geometry in this lecture, see Reynolds (1993).

  45. 45.

    “Werden jedoch vier Raumpunkte, die nicht in einer Ebene liegen, zu einer und derselben Zeit t 0 aufgefaßt, so ist es nicht mehr möglich, durch eine Lorentz-Transformation eine Abänderung des Zeitparameters vorzunehmen, ohne daß der Charakter der Gleichzeitigkeit dieser vier Raum-Zeitpunkt verloren” (Minkowski 1908, 69).

  46. 46.

    See Born (1909, 9; 1959, 503). For further references and details on Minkowski’s distortion and its reception, see Walter (1999a).

  47. 47.

    NSUB Handschriftenabteilung. The demonstration missing from the published text of Minkowski’s lecture was later supplied by Arnold Sommerfeld, in an editorial note to his friend’s lecture. The annotated version of the lecture appeared in an anthology of papers on the theory of relativity edited by Blumenthal (1913). According to Rowe (2009, 37), Sommerfeld was the driving force behind the latter anthology.

  48. 48.

    As seen above, Poincaré also derived the Lorentz transformation from the assumption of Lorentz contraction of concrete rods, and the isotropy of light propagation for inertial observers. He later considered (apparent) time deformation as a consequence of the principle of relativity and Lorentz contraction; see (Poincaré 1913, 44).

  49. 49.

    Tanner (1917, 571). I thank J. Barrow-Green for pointing me to this source.

  50. 50.

    Robb was admitted to the Society on 27 Nov. 1905 (Proceedings of the Cambridge Philosophical Society 16, 1912, p. 16).

  51. 51.

    Robb to Larmor, 6 March 1904, Larmor Papers, St. John’s College Library; Lorentz (1909, 115). Voigt sent Lorentz a copy of Robb’s dissertation; see Lorentz to Voigt, 18 Dec. 1904, in Kox (2008, § 121).

  52. 52.

    In a letter to Larmor of 18 Jan. 1911, the Cambridge mathematician A. E. H. Love wrote that he had “noted explicitly in writing” to Robb that one of his formulas was from Lobachevski geometry, and that “space might be saved by bringing this fact in” (Larmor Papers, St. John’s College Library). On Robb’s use of hyperbolic geometry, see Walter (1999b).

  53. 53.

    For Robb the “appearance” of contraction was a necessary consequence of light time-of-flight measurements. Robb, Einstein, and their contemporaries focused on the instantaneous form of moving objects, in an approach distinct from the one adopted in the late 1950s. The latter studies characterized what Penrose (1959) referred to as the “photographic” appearance of a moving object.

  54. 54.

    Robb (1911, 1), original emphasis. Cf. Poincaré, Science and Hypothesis (Poincaré 1905a, 50).

  55. 55.

    For appreciations of Robb’s geometry, see Briginshaw (1979) and Cat (2016).

  56. 56.

    LMS Council Minutes, 10 Nov. 1910, LMS archives.

  57. 57.

    Love to Larmor, 18 Jan. 1911, op. cit. Sedleian Chair of Natural Philosophy at Oxford since 1899, Love was Secretary (i.e., managing editor) of the LMS from 1890 to 1910.

  58. 58.

    Jahrbuch über die Fortschritte der Mathematik 43, 1911, p. 559. A succinct summary of Robb’s index concept is provided by Barrow-Green and Gray (2006).

  59. 59.

    LMS Council Minutes, 9 Feb. 1911, LMS archives.

  60. 60.

    Cunningham (1914, 87–89); for an analysis of the procedure, see Newman and Price (2010).

  61. 61.

    See Cunningham (1910, 79). As for Bateman, he credited Cunningham with the discovery of the conformal transformations of the equations of electrodynamics; see Bateman (1910c, 224).

  62. 62.

    L’Enseignement mathématique 10 (1908), 336; Bateman to Hilbert, 1909, Nachlass Hilbert 13, Handschriftenabteilung, NSUB Göttingen.

  63. 63.

    See Minkowski (1909), where the Lorentz transformation is attributed to a paper published in 1887 by Voigt. Minkowski described the covariance of the differential equation of light-wave propagation as the “impetus and true motivation” for assuming the covariance of all laws of physics with respect to the transformations of the Lorentz group (p. 80).

  64. 64.

    See Bateman (1908, 629), read 8 Sept. 1908. No mention is made in this paper of the source of the transformations, but a subsequent work by Bateman credits Cunningham with the “discovery of the formulæ of transformation in the case of an inversion in the four-dimensional space” and cites papers by Hargreaves and Minkowski employing a four-dimensional space with one imaginary axis (Bateman 1909, 224, communicated 9 Oct. 1908). Minkowski’s paper (Minkowski 1908, published 5 April 1908) was cited by both Cunningham and Bateman. Remarked first by Whittaker (1951, vol. 2, 195), the significance of Minkowski’s spacetime theory for the contributions of Cunningham and Bateman is contested by Warwick (2003, 423 n. 49). On the “light-geometric approach” to the foundations of relativity by Cunningham and Bateman, see Jammer (1979, 222).

  65. 65.

    For example, see Warwick (2003, 421) and Bromwich (1901).

  66. 66.

    von Laue (1961, XVIII–XXI); von Laue to Margot Einstein, 23 Oct. 1959, cited by Holton (1965, 39).

  67. 67.

    Laue (1911b); Janssen and Mecklenburg (2006).

  68. 68.

    von Laue (1952).

  69. 69.

    See Max Born’s review in Physikalische Zeitschrift (Born 1912).

  70. 70.

    On Laue’s portrayal of Einstein’s contribution, see Staley (1998). Laue’s contributions to relativity are detailed by Norton (1992) and Rowe (2008).

  71. 71.

    Planck’s argument, which builds on that of Einstein (see above, § 1.2), has inspired many textbook authors. For an example employing a spherical array of photomultipliers at rest in two inertial frames in relative motion, see Rosser (1967, 76).

  72. 72.

    Laue’s use of primes in his light-sphere diagram is peculiar, but is reproduced intact in Figure 1.12, in keeping with the first four editions of his textbook (up to 1921). In the sixth edition (von Laue 1955, 29), A, B, and C are all unprimed, and the primed symbols are as expected: O′ and t′.

  73. 73.

    The transformations of the 15-parameter group of conformal transformations G 15 correspond to what Bateman called the “spherical wave transformations.” On the Bateman-Cunningham discovery of the covariance of Maxwell’s equations under G 15, see Rowe (1999, 211), and Kastrup (2008).

  74. 74.

    Wiechert to Lorentz, 9 March 1912, in Kox (2008, 359); Wiechert (1911, 756).

  75. 75.

    Born in Tiflis (Tbilisi, Georgia), von Ignatowsky earned his Ph.D. in physics at the University of Giessen in 1909 and found employment with the Leitz optical firm in Wetzlar (Klein et al. 1993, 251).

  76. 76.

    On von Ignatowsky’s transformation see Jammer (1979, 215), Torretti (1996, 76), Brown (2005, 105), and Darrigol (2014, 139).

  77. 77.

    On the relation between Lorentz contraction and the Heaviside ellipsoid, see Hunt (1988).

  78. 78.

    “Nun dürfen wir aber unter einem Ruhekoordinatensystem nicht etwa nur ein mathematisches Gebilde verstehen, sonder müssen uns dabei eine materielle Welt mit ihren Beobachtern und synchronem Uhren denken.”

  79. 79.

    Berg went to work for the Siemens-Halske engineering firm in Berlin, where he co-discovered element 75 (Rhenium) with Walter Noddack and Ida Tacke.

References

  • Abraham, M. (1905). Theorie der Elektrizität, Volume 2, Elektromagnetische Theorie der Strahlung. Leipzig: Teubner.

    MATH  Google Scholar 

  • Balàzs, N. L. (1972). The acceptability of physical theories: Poincaré versus Einstein. In L. O’Raifeartaigh (Ed.) General relativity: Papers in Honour of J. L. Synge (pp. 21–34). Oxford: Oxford University Press.

    Google Scholar 

  • Barrow-Green, J., & Gray, J. (2006). Geometry at Cambridge, 1863–1940. Historia Mathematica, 33(3), 315–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Bateman, H. (1908). On conformal transformations of a space of four dimensions and their application to geometrical optics. Report–British Association, 78, 627–629.

    Google Scholar 

  • Bateman, H. (1909). The conformal transformations of a space of four dimensions and their applications to geometrical optics. Proceedings of the London Mathematical Society, 7, 70–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Bateman, H. (1910a). The physical aspect of time. Memoirs and Proceedings, Manchester Literary and Philosophical Society, 54(14), 1–13.

    MATH  Google Scholar 

  • Bateman, H. (1910b). The relation between electromagnetism and geometry. Philosophical Magazine, 20, 623–628.

    MATH  Google Scholar 

  • Bateman, H. (1910c). The transformations of the electrodynamical equations. Proceedings of the London Mathematical Society, 8, 223–264.

    Article  MathSciNet  MATH  Google Scholar 

  • Bateman, H. (1912). Some geometrical theorems connected with Laplace’s equation and the equation of wave motion. American Journal of Mathematics, 34, 325–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Berg, O. (1910). Das Relativitätsprinzip der Elektrodynamik. Abhandlungen der Fries’schen Schule, 3, 333–382.

    Google Scholar 

  • Bergson, H. (1922). Durée et simultanéité : à propos de la théorie d’Einstein. Paris: Alcan.

    MATH  Google Scholar 

  • Blumenthal, O. (Ed.). (1913). Das Relativitätsprinzip; Eine Sammlung von Abhandlungen. Leipzig: Teubner.

    Google Scholar 

  • Born, M. (1909). Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Annalen der Physik, 335, 1–56.

    Article  MATH  Google Scholar 

  • Born, M. (1912). Besprechung von Max Laue, Das Relativitätsprinzip. Physikalische Zeitschrift, 13, 175–176.

    Google Scholar 

  • Born, M. (1914). Besprechung von Max Weinstein, Die Physik der bewegten Materie und die Relativitätstheorie. Physikalische Zeitschrift, 15, 676.

    Google Scholar 

  • Born, M. (1920). Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Born, M. (1959). Erinnerungen an Hermann Minkowski zur 50. Wiederkehr seines Todestages. Naturwissenschaften, 46(17), 501–505.

    Article  Google Scholar 

  • Bridgman, P. W. (1916). Tolman’s principle of similitude. Physical Review, 8, 423–431.

    Article  Google Scholar 

  • Briginshaw, A. J. (1979). The axiomatic geometry of space-time: An assessment of the work of A. A. Robb. Centaurus, 22(4), 315–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Bromwich, T. J. I. (1901). Conformal space transformations. Proceedings of the London Mathematical Society, 33(749), 185–192.

    MathSciNet  MATH  Google Scholar 

  • Brown, H. R. (2005). Physical relativity: Space-time structure from a dynamical perspective. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Bucherer, A. H. (1907). On a new principle of relativity in electromagnetism. Philosophical Magazine, 13, 413–420.

    MATH  Google Scholar 

  • Bucherer, A. H. (1908a). Messungen an Becquerelstrahlen; die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie. Physikalische Zeitschrift, 9, 755–762.

    MATH  Google Scholar 

  • Bucherer, A. H. (1908b). On the principle of relativity and on the electromagnetic mass of the electron; a reply to Mr. E. Cunningham. Philosophical Magazine, 15, 316–318.

    MATH  Google Scholar 

  • Buchwald, J. Z. (1985). From Maxwell to microphysics. Chicago: University of Chicago Press.

    Google Scholar 

  • Cat, J. (2016). Images and logic of the light cone: Tracking Robb’s postulational turn in physical geometry. Revista de Humanidades de Valparaiso, 4(8), 43–105.

    Article  Google Scholar 

  • Cunningham, E. (1907). On the electromagnetic mass of a moving electron. Philosophical Magazine, 14:538–547.

    MATH  Google Scholar 

  • Cunningham, E. (1910). The principle of relativity in electrodynamics and an extension thereof. Proceedings of the London Mathematical Society, 8, 77–98.

    Article  MathSciNet  Google Scholar 

  • Cunningham, E. (1911). The principle of relativity. Report–British Association, 81:236–245.

    Google Scholar 

  • Cunningham, E. (1914). The principle of relativity. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Cuvaj, C. (1970). A history of relativity: The role of Henri Poincaré and Paul Langevin. PhD thesis, Yeshiva University, New York.

    Google Scholar 

  • Darrigol, O. (1995). Henri Poincaré’s criticism of fin de siècle electrodynamics. Studies in History and Philosophy of Modern Physics, 26, 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Darrigol, O. (1996). The electrodynamic origins of relativity theory. Historical Studies in the Physical and Biological Sciences, 26(2), 241–312.

    Article  Google Scholar 

  • Darrigol, O. (2000). Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Darrigol, O. (2014). Physics and necessity: Rationalist pursuits from the Cartesian past to the quantum present. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Darrigol, O. (2015). Poincaré and light. In B. Duplantier & V. Rivasseau (Eds.), Henri Poincaré, 1912–2012. Progress in mathematical physics (Vol. 67, pp. 1–50). Berlin: Springer.

    MATH  Google Scholar 

  • Du Pasquier, L.-G. (1922). Le principe de la relativité et les théories d’Einstein. Paris: Doin.

    MATH  Google Scholar 

  • Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891–921.

    Article  MATH  Google Scholar 

  • Einstein, A. (1907). Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411–462.

    Google Scholar 

  • Frank, P. G. (1911). Das Verhalten der elektromagnetischen Feldgleichungen gegenüber linearen Transformationen. Annalen der Physik, 340, 599–607.

    Article  MATH  Google Scholar 

  • Frank, P. G. (1947). Einstein: His life and times. New York: Knopf.

    Google Scholar 

  • Galison, P. (1979). Minkowski’s spacetime: From visual thinking to the absolute world. Historical Studies in the Physical Sciences, 10, 85–121.

    Article  Google Scholar 

  • Galison, P. (2003). Einstein’s clocks and Poincaré’s maps: Empires of time. New York: Norton.

    MATH  Google Scholar 

  • Goldberg, S. (1970). In defense of Ether: The British response to Einstein’s special theory of relativity 1905–1911. Historical Studies in the Physical Sciences, 2, 89–125.

    Article  Google Scholar 

  • Gray, J. (1989). Ideas of space: Euclidean, non-Euclidean and relativistic (2nd ed.). Oxford: Clarendon.

    MATH  Google Scholar 

  • Gray, J. (2013). Henri Poincaré: A scientific biography. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Guillaume, E. (1921). Expression mono et polyparametrique du temps dans la theorie de la relativité. In H. Villat (Ed.), Comptes rendus du Congrès international des mathématiciens: Strasbourg, 22–30 septembre 1920 (pp. 594–602). Toulouse: Edouard Privat.

    Google Scholar 

  • Guillaume, E. (1922). Un résultat des discussions de la théorie de la relativité d’Einstein au Collège de France. Revue générale des sciences pures et appliquées, 33, 322–324.

    Google Scholar 

  • Heilbron, J. L. (1963). Interview with Dr. Ebenezer Cunningham. http://www.aip.org/history/catalog/icos/4565.html

    Google Scholar 

  • Heilbron, J. L. (1986). The dilemmas of an upright man: Max Planck as spokesman for German science. Berkeley: University of California Press.

    Google Scholar 

  • Hirosige, T. (1968). Theory of relativity and the ether. Japanese Studies in the History of Science, 7, 37–53.

    Google Scholar 

  • Holton, G. (1965). The metaphor of space-time events in science. Eranos Jahrbuch, 34, 33–78.

    Google Scholar 

  • Hunt, B. J. (1986). Experimenting on the ether: Oliver J. Lodge and the great whirling machine. Historical Studies in the Physical Sciences, 16, 111–134.

    Article  Google Scholar 

  • Hunt, B. J. (1988). The origins of the FitzGerald contraction. British Journal for the History of Science, 21(1), 67–76.

    Article  MathSciNet  Google Scholar 

  • Jammer, M. (1979). Some foundational problems in the special theory of relativity. In G. Toraldo di Francia (Ed.), Problems in the foundations of physics. Proceedings of the international school of physics “Enrico Fermi” (Vol. 72, pp. 202–236). Amsterdam: North-Holland.

    Google Scholar 

  • Janssen, M., & Mecklenburg, M. (2006). From classical to relativistic mechanics: Electromagnetic models of the electron. In V.F. Hendricks, K.F. Jørgenson, J. Lützen, & S.A. Pedersen (Eds.), Interactions: Mathematics, physics and philosophy, 1860–1930 (pp. 65–134). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jungnickel, C., & McCormmach, R. (1986). Intellectual mastery of nature: Theoretical physics from Ohm to Einstein. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Kastrup, H. A. (2008). On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics. Annalen der Physik, 17(9), 691–704.

    MathSciNet  MATH  Google Scholar 

  • Kennedy, W. L. (2005). On Einstein’s 1905 electrodynamics paper. Studies in History and Philosophy of Modern Physics, 36(1), 61–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, M. J., Kox, A. J., & Schulmann, R. (Eds.). (1993). The collected papers of Albert Einstein, volume 5, the Swiss years: Correspondence, 1902–1914. Princeton: Princeton University Press.

    Google Scholar 

  • Kormos Buchwald, D., Sauer, T., Rosenkranz, Z., Illy, J., & Holmes, V. I. (Eds.). (2006). The collected papers of Albert Einstein, volume 10, the Berlin years: Correspondence, May–December 1920. Princeton: Princeton University Press.

    Google Scholar 

  • Kox, A. J. (Ed). (2008). The scientific correspondence of H.A. Lorentz (Vol. 1). Berlin: Springer.

    MATH  Google Scholar 

  • Langevin, P. (1905). Sur l’origine des radiations et l’inertie électromagnétique. Journal de physique théorique et appliquée, 4, 165–183.

    Article  Google Scholar 

  • Langevin, P. (1906). The relations of the physics of electrons to the other branches of science. In H. J. Rogers (Ed.), Congress of arts and science, universal exposition, St. Louis, 1904, volume 4: Physics, chemistry, astronomy, sciences of the Earth, pages 121–156. Houghton, Mifflin & Co., Boston.

    Google Scholar 

  • Larmor, J. (1900). Æther and matter. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Larmor, J. (1938). Alfred Arthur Robb 1873–1936. Obituary Notices of Fellows of the Royal Society, 2, 315–321.

    Article  Google Scholar 

  • Laue, M. (1903). Über die Interferenzerscheinungen an planparallelen Platten. PhD thesis, University of Berlin, Berlin.

    Google Scholar 

  • Laue, M. (1907). Die Mitführung des Lichtes durch bewegte Körper nach dem Relativitätsprinzip. Annalen der Physik, 328, 989–990.

    Article  MATH  Google Scholar 

  • Laue, M. (1908). Die Wellenstrahlung einer bewegten Punktladung nach dem Relativitätsprinzip. Berichte der Deutschen Physikalischen Gesellschaft, 10, 838–844.

    MATH  Google Scholar 

  • Laue, M. (1911a). Das Relativitätsprinzip. Braunschweig: Vieweg.

    MATH  Google Scholar 

  • Laue, M. (1911b). Zur Dynamik der Relativitätstheorie. Annalen der Physik, 340, 524–542.

    Article  MATH  Google Scholar 

  • Laue, M. (1912). Zwei Einwände gegen die Relativitätstheorie und ihre Widerlegung. Physikalische Zeitschrift, 13, 118–120.

    MATH  Google Scholar 

  • Lémeray, M. (1912). Sur un théorème de M. Einstein. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 155, 1224–1227.

    MATH  Google Scholar 

  • Lie, S., & Scheffers, G. (1893). Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Leipzig: Teubner.

    Google Scholar 

  • Liénard, A. (1898). Champ électrique et magnétique produit par une charge concentrée en un point et animée d’un mouvement quelconque. Éclairage électrique, 16, 5–14, 53–59, 106–112.

    Google Scholar 

  • Lorentz, H. A. (1897). Ueber den Einfluss magnetischer Kräfte auf die Emission des Lichtes. Annalen der Physik, 299, 278–284.

    Article  MATH  Google Scholar 

  • Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity less than that of light. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, 6, 809–831.

    Google Scholar 

  • Lorentz, H. A. (1909). The theory of electrons and its application to the phenomena of light and radiant heat. New York: Columbia University Press.

    MATH  Google Scholar 

  • Lorentz, H. A. (1916). The theory of electrons and its application to the phenomena of light and radiant heat (2nd ed.). Leipzig: Teubner.

    MATH  Google Scholar 

  • Lorenz, L. V. (1867). On the identity of the vibrations of light with electrical currents. Philosophical Magazine, 34(230), 287–301.

    Google Scholar 

  • Maltese, G., & Orlando, L. (1995). The definition of rigidity in the special theory of relativity and the genesis of the general theory of relativity. Studies in History and Philosophy of Modern Physics, 26(3), 263–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Manegold, K.-H. (1970). Universität, Technische Hochschule und Industrie. Berlin: Duncker & Humblot.

    Google Scholar 

  • Martínez, A. A. (2009). Kinematics: The lost origins of Einstein’s relativity. Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  • McCrea, W. H. (1978). Ebenezer Cunningham. Bulletin of the London Mathematical Society, 10(1), 116–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, A. I. (1973). A study of Henri Poincaré’s ‘Sur la dynamique de l’électron’. Archive for History of Exact Sciences, 10, 207–328.

    Article  MathSciNet  Google Scholar 

  • Miller, A. I. (1976). On Einstein, light quanta, radiation and relativity in 1905. American Journal of Physics, 44(10), 912–923.

    Article  MathSciNet  Google Scholar 

  • Miller, A. I. (1981). Albert Einstein’s special theory of relativity: Emergence (1905) and early interpretation. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Minkowski, H. (1908). Die Grundgleichungen für die electromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1908, 53–111.

    MATH  Google Scholar 

  • Minkowski, H. (1909). Raum und Zeit. Jahresbericht der deutschen Mathematiker-Vereinigung, 18, 75–88.

    MATH  Google Scholar 

  • Minkowski, H. (1915). Das Relativitätsprinzip. Jahresbericht der deutschen Mathematiker-Vereinigung, 24, 372–382.

    MATH  Google Scholar 

  • Neumann, C. G. (1870). Ueber die Principien der Galilei-Newton’schen Theorie. Leipzig: Teubner.

    MATH  Google Scholar 

  • Newman, E. T., & Price, R. H. (2010). The Lorentz transformation: Simplification through complexification. American Journal of Physics, 78(1), 14–19.

    Article  Google Scholar 

  • Norton, J. D. (1992). Einstein, Nordström and the early demise of Lorentz-covariant theories of gravitation. Archive for History of Exact Sciences, 45, 17–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Penrose, R. (1959). The apparent shape of a relativistically moving sphere. Proceedings of the Cambridge Philosophical Society, 55, 137–139.

    Article  MathSciNet  Google Scholar 

  • Planck, M. (1907). Zur Dynamik bewegter Systeme. Sitzungsberichte der königliche preußischen Akademie der Wissenschaften, 29, 542–570.

    MATH  Google Scholar 

  • Planck, M. (1910). Acht Vorlesungen über theoretische Physik. Leipzig: Hirzel.

    MATH  Google Scholar 

  • Poincaré, H. (1891). Sur la théorie des oscillations hertziennes. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 113, 515–519.

    MATH  Google Scholar 

  • Poincaré, H. (1901). Électricité et optique: la lumière et les théories électrodynamiques. Paris: Carré et Naud.

    MATH  Google Scholar 

  • Poincaré, H. (1904). L’état actuel et l’avenir de la physique mathématique. Bulletin des sciences mathématiques, 28, 302–324.

    MATH  Google Scholar 

  • Poincaré, H. (1905a). Science and hypothesis. London: Walter Scott.

    MATH  Google Scholar 

  • Poincaré, H. (1905b). Sur la dynamique de l’électron. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 140, 1504–1508.

    MATH  Google Scholar 

  • Poincaré, H. (1906). Sur la dynamique de l’électron. Rendiconti del circolo matematico di Palermo, 21, 129–176.

    Article  MATH  Google Scholar 

  • Poincaré, H. (1907). La relativité de l’espace. Année psychologique, 13, 1–17.

    Article  Google Scholar 

  • Poincaré, H. (1908a). La dynamique de l’électron. Revue générale des sciences pures et appliquées, 19, 386–402.

    MATH  Google Scholar 

  • Poincaré, H. (1908b). Science et méthode. Paris: Flammarion.

    MATH  Google Scholar 

  • Poincaré, H. (1909). La mécanique nouvelle. Revue scientifique, 12, 170–177.

    MATH  Google Scholar 

  • Poincaré, H. (1913). La dynamique de l’électron. Paris: Dumas.

    MATH  Google Scholar 

  • Poincaré, H. (1953). Les limites de la loi de Newton. Bulletin astronomique, 17(3), 21–269.

    Google Scholar 

  • Pyenson, L. (1979). Physics in the shadow of mathematics: The Göttingen electron-theory seminar of 1905. Archive for History of Exact Sciences, 21(1), 55–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Renn, J. (2007). The third way to general relativity. In J. Renn (Ed.), The genesis of general relativity, volume 3, gravitation in the twilight of classical physics: Between mechanics, field theory, and astronomy. The genesis of general relativity (pages 21–75). Berlin: Springer.

    Google Scholar 

  • Reynolds, W. F. (1993). Hyperbolic geometry on a hyperboloid. American Mathematical Monthly, 100, 442–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Ribaucour, A. (1870). Sur la déformation des surfaces. Comptes rendus hebdomadaires de l’Académie des sciences de Paris, 70, 330–333.

    MATH  Google Scholar 

  • Robb, A. A. (1904). Beiträge zur Theorie des Zeemaneffektes. PhD thesis, Georg-Augusta Universität Göttingen, Leipzig.

    Article  MATH  Google Scholar 

  • Robb, A. A. (1911). Optical geometry of motion: A new view of the theory of relativity. Cambridge: W. Heffer and Sons.

    MATH  Google Scholar 

  • Rohrlich, F. (2007). Classical charged particles (3rd ed.). Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Rosser, W. G. V. (1967). Introductory relativity. London: Butterworth.

    Google Scholar 

  • Rowe, D. E. (1989). Klein, Hilbert, and the Göttingen mathematical tradition. In K. M. Olesko (Ed.), Science in Germany. Osiris (Vol. 5, pp. 186–213). Philadelphia: History of Science Society.

    Article  MathSciNet  MATH  Google Scholar 

  • Rowe, D. E. (1999). The Göttingen response to general relativity and Emmy Noether’s theorems. In J. Gray (Ed.), The symbolic universe: Geometry and physics, 1890–1930 (pp. 189–233). Oxford: Oxford University Press.

    Google Scholar 

  • Rowe, D. E. (2008). Max von Laue’s role in the relativity revolution. Mathematical Intelligencer, 30(3), 54–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Rowe, D. E. (2009). A look back at Hermann Minkowski’s Cologne lecture ‘Raum und Zeit’. Mathematical Intelligencer, 31(2), 27–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez-Ron, J. M. (1987). The reception of special relativity in Great Britain. In T. F. Glick (Ed.), The comparative reception of relativity. Boston studies in the philosophy of science (pp. 27–58). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Searle, G. F. C. (1897). On the steady motion of an electrified ellipsoid. Philosophical Magazine, 44, 329–341.

    MATH  Google Scholar 

  • Seelig, C. (1960). Albert Einstein: Leben und Werk eines Genies unserer Zeit. Zürich: Europa Verlag.

    Google Scholar 

  • Silberstein, L. (1914). The theory of relativity. London: Macmillan.

    MATH  Google Scholar 

  • Sommerfeld, A. (1913). Anmerkungen zu Minkowski, Raum und Zeit. In O. Blumenthal (Ed.), Das Relativitätsprinzip; Eine Sammlung von Abhandlungen (pp. 69–73). Leipzig: Teubner.

    Google Scholar 

  • Sommerfeld, A. (1919). Atombau und Spektrallinien. Braunschweig: Vieweg.

    MATH  Google Scholar 

  • Sommerfeld, A. (1948). Vorlesungen über theoretische Physik, Bd. 3: Elektrodynamik. Wiesbaden: Dieterich.

    MATH  Google Scholar 

  • Stachel, J., Cassidy, D. C., Renn, J., & Schulmann, R. (Eds.). (1989). The collected papers of Albert Einstein, volume 2, the Swiss years: Writings, 1900–1909. Princeton: Princeton University Press.

    Google Scholar 

  • Staley, R. (1998). On the histories of relativity: The propagation and elaboration of relativity theory in participant histories in Germany, 1905–1911. Isis, 89(2), 263–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Sternberg, S. (1986). Imagery in scientific thought by Arthur I. Miller. Mathematical Intelligencer, 8(2), 65–74.

    MathSciNet  Google Scholar 

  • Tanner, J. R. (Ed.). (1917). The historical register of the University of Cambridge, being a supplement to the calendar with a record of university offices, honours and distinctions to the year 1910. Cambridge: Cambridge University Press.

    Google Scholar 

  • Thomson, J. J. (1893). Notes on recent researches in electricity and magnetism: Intended as a sequel to Professor Clerk-Maxwell’s treatise on electricity and magnetism. Oxford: Clarendon.

    MATH  Google Scholar 

  • Timerding, H. E. (1912). Über ein einfaches geometrisches Bild der Raumzeitwelt Minkowskis. Jahresbericht der deutschen Mathematiker-Vereinigung, 21, 274–285.

    MATH  Google Scholar 

  • Timerding, H. E. (1915). Über die Raumzeitvektoren und ihre geometrische Behandlung. In K. Bergwitz (Ed.), Festschrift Julius Elster und Hans Geistel zum sechzigsten Geburtstage: Arbeiten aus den Gebieten der Physik, Mathematik, Chemie (pp. 514–520). Braunschweig: Vieweg.

    Google Scholar 

  • Tolman, R. C. (1910). The second postulate of relativity. Physical Review 31, 26–40.

    Google Scholar 

  • Tolman, R. C. (1914). The principle of similitude. Physical Review, 3, 244–255.

    Article  MATH  Google Scholar 

  • Torretti, R. (1996). Relativity and geometry (2nd ed.). New York: Dover Publications.

    MATH  Google Scholar 

  • von Ignatowsky, W. S. (1909). Die Vektoranalysis und Anwendung in der theoretischen Physik. Leipzig: Teubner.

    MATH  Google Scholar 

  • von Ignatowsky, W. S. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Berichte der Deutschen Physikalischen Gesellschaft, 12(20), 788–796.

    MATH  Google Scholar 

  • von Laue, M. (1913a). Das Relativitätsprinzip. Jahrbücher der Philosophie, 1, 99–128.

    MATH  Google Scholar 

  • von Laue, M. (1913b). Das Relativitätsprinzip (2nd ed.). Braunschweig: Vieweg.

    MATH  Google Scholar 

  • von Laue, M. (1947). Geschichte der Physik. Bonn: Universitäts-Verlag.

    MATH  Google Scholar 

  • von Laue, M. (1952). Mein physikalischer Werdegang; eine Selbstdarstellung. In H. Hartmann (Ed.), Schöpfer des neuen Weltbildes: Große Physiker unserer Zeit (pp. 178–207). Bonn: Athenäum-Verlag.

    Google Scholar 

  • von Laue, M. (1955). Die Relativitätstheorie: die spezielle Relativitätstheorie (6th ed.). Braunschweig: Vieweg.

    MATH  Google Scholar 

  • von Laue, M. (1961). Aufsätze und Vorträge. Braunschweig: Vieweg.

    Google Scholar 

  • Walter, S. A. (1999a). Minkowski, mathematicians, and the mathematical theory of relativity. In H. Goenner, J. Renn, T. Sauer, & J. Ritter (Eds.), The expanding worlds of general relativity, Einstein studies (Vol. 7, pp. 45–86). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Walter, S. A. (1999b). The non-Euclidean style of Minkowskian relativity. In J. Gray (Ed.), The symbolic universe: Geometry and physics, 1890–1930 (pp. 91–127). Oxford: Oxford University Press.

    Google Scholar 

  • Walter, S. A. (2007). Breaking in the 4-vectors: The four-dimensional movement in gravitation, 1905–1910. In J. Renn & M. Schemmel (Eds.), The genesis of general relativity, volume 3: Theories of gravitation in the twilight of classical physics (pp. 193–252). Berlin: Springer.

    Google Scholar 

  • Walter, S. A. (2008). Hermann Minkowski’s approach to physics. Mathematische Semesterberichte, 55(2), 213–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Walter, S. A. (2009). Hypothesis and convention in Poincaré’s defense of Galilei spacetime. In M. Heidelberger & G. Schiemann (Eds.), The significance of the hypothetical in the natural sciences (pp. 193–219). Berlin: Walter de Gruyter.

    Google Scholar 

  • Walter, S. A. (2010). Minkowski’s modern world. In V. Petkov (Ed.), Minkowski spacetime: A hundred years later. Fundamental theories of physics (Vol. 165, pp. 43–61). Berlin: Springer.

    Google Scholar 

  • Walter, S. A. (2011). Henri Poincaré, theoretical physics and relativity theory in Paris. In K.-H. Schlote & M. Schneider (Eds.), Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century (pp. 213–239). Frankfurt am Main: Harri Deutsch.

    Google Scholar 

  • Walter, S. A. (2014). Poincaré on clocks in motion. Studies in History and Philosophy of Modern Physics, 47(1), 131–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Walter, S. A. (2017). Henri Poincaré’s life, science, and life in science. Historia Mathematica, 44(4), 425–435.

    Article  Google Scholar 

  • Walter, S. A. (2018). Poincaré-week in Göttingen, in light of the Hilbert-Poincaré correspondence of 1908–1909. In M. T. Borgato, E. Neuenschwander & I. Passeron (Eds.), Mathematical correspondences and critical editions (pp. 189–202). Basel: Birkhäuser.

    Google Scholar 

  • Walter, S. A., Bolmont, E., & Coret, A. (Eds.). (2007b). La correspondance d’Henri Poincaré, volume 2: La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Walter, S. A., Nabonnand, P., & Rollet, L. (Eds.). (2016). Henri Poincaré papers. http://henripoincarepapers.univ-nantes.fr.

  • Warwick, A. C. (2003). Masters of theory: Cambridge and the rise of mathematical physics. Chicago: University of Chicago.

    Book  MATH  Google Scholar 

  • Weyl, H. (1922). Das Raumproblem. Jahresbericht der deutschen Mathematiker-Vereinigung, 31, 205–221.

    MATH  Google Scholar 

  • Whittaker, E. T. (1951). A history of the theories of aether and electricity. London: T. Nelson.

    MATH  Google Scholar 

  • Wiechert, E. (1900). Elektrodynamische Elementargesetze. In J. Bosscha (Ed.), Recueil de travaux offerts par les auteurs à H. A. Lorentz. Archives néerlandaises des sciences exactes et naturelles (Vol. 5, pp. 549–573). The Hague: Nijhoff.

    Google Scholar 

  • Wiechert, E. (1911). Relativitätsprinzip und Äther. Physikalische Zeitschrift, 12, 689–707, 737–758.

    MATH  Google Scholar 

  • Williamson, R. B. (1977). Logical economy in Einstein’s ‘on the electrodynamics of moving bodies’. Studies in History and Philosophy of Science, 8(1), 46–60.

    Article  Google Scholar 

  • Wright, S. P. (1975). Henri Poincaré: A developmental study of his philosophical and scientific thought. PhD thesis, Harvard University, Cambridge, MA.

    Google Scholar 

  • Zahar, E. (1997). Poincaré’s philosophy of geometry, or does geometric conventionalism deserve its name? Studies in History and Philosophy of Modern Physics, 28, 183–218.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Key points of this paper were elaborated in discussions with Olivier Darrigol, Tilman Sauer, June Barrow-Green, and David Rowe; their help is much appreciated. The paper benefits from the expert assistance of Kathryn McKee and Fiona Colbert of St. John’s College, whom I thank most kindly. Citations of the Joseph Larmor Correspondence are by permission of the Master and Fellows of St. John’s College, Cambridge. Permission to quote from the Council Minutes of the London Mathematical Society is gratefully acknowledged. I thank the Niedersächsiche Staats- und Universitätsbibliothek Göttingen for authorizing publication of the diagram in Figure 1.9. I am grateful for the support of the Dibner Rare Book and Manuscript Library and to its staff members Lilla Vekerdy and Kirsten van der Veen for their able assistance during my residence in 2013. A preliminary version of the paper was published in 2011 on PhilSci-Archive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walter, S.A. (2018). Figures of Light in the Early History of Relativity (1905–1914). In: Rowe, D., Sauer, T., Walter, S. (eds) Beyond Einstein. Einstein Studies, vol 14. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-7708-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7708-6_1

  • Published:

  • Publisher Name: Birkhäuser, New York, NY

  • Print ISBN: 978-1-4939-7706-2

  • Online ISBN: 978-1-4939-7708-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics