Clinical Genetics for the Gynecologist

  • Valerie P. Grignol
  • Doreen M. Agnese


Family history is a well-recognized risk factor for the development of breast and gynecologic cancer. It is thought that hereditary cases account for 5–10% of all cancers. A number of well-established, highly penetrant syndromes such as Lynch syndrome and hereditary breast and ovarian cancer syndrome account for the vast majority of the hereditary cases. A number of other moderate-risk genes associated with familial syndromes have also been described. The identification of these additional genes has greatly expanded testing options; however, less is known about risk and management for these more recently described genes. This chapter describes the hereditary syndromes associated with breast and gynecologic malignancies and provides risk-reduction recommendations when available. The criteria for genetic testing, methods of genetic testing, and application of results are reviewed.


Genetic testing Ovarian cancer Breast cancer Endometrial cancer Hereditary cancer syndromes Multi-gene testing 


  1. 1.
    Newman B, Austin MA, Lee M, King MC. Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci U S A. 1988;85(9):3044–8.CrossRefGoogle Scholar
  2. 2.
    Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250(4988):1684–9.CrossRefGoogle Scholar
  3. 3.
    Narod SA, Feunteun J, Lynch HT, Watson P, Conway T, Lynch J, et al. Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet. 1991;338(8759):82–3.CrossRefGoogle Scholar
  4. 4.
    Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265(5181):2088–90.CrossRefGoogle Scholar
  5. 5.
    Whittemore AS, Gong G, John EM, McGuire V, Li FP, Ostrow KL, et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic whites. Cancer Epidemiol Biomark Prev. 2004;13(12):2078–83.Google Scholar
  6. 6.
    Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br J Cancer 2000 Nov;83(10):1301–8.Google Scholar
  7. 7.
    Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997;336(20):1401–8.CrossRefGoogle Scholar
  8. 8.
    Malone KE, Begg CB, Haile RW, Borg A, Concannon P, Tellhed L, et al. Population-based study of the risk of second primary contralateral breast cancer associated with carrying a mutation in BRCA1 or BRCA2. J Clin Oncol. 2010;28(14):2404–10.CrossRefGoogle Scholar
  9. 9.
    Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.CrossRefGoogle Scholar
  10. 10.
    Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007;25(11):1329–33.CrossRefGoogle Scholar
  11. 11.
    Brose MS, Rebbeck TR, Calzone KA, Stopfer JE, Nathanson KL, Weber BL. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst. 2002;94(18):1365–72.CrossRefGoogle Scholar
  12. 12.
    Tai YC, Domchek S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2007;99(23):1811–4.CrossRefGoogle Scholar
  13. 13.
    Iodice S, Barile M, Rotmensz N, Feroce I, Bonanni B, Radice P, et al. Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer. 2010;46(12):2275–84.CrossRefGoogle Scholar
  14. 14.
    Rebbeck TR, Friebel T, Lynch HT, Neuhausen SL, van ‘t Veer L, Garber JE, et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE study group. J Clin Oncol. 2004;22(6):1055–62.CrossRefGoogle Scholar
  15. 15.
    Watson P, Lynch HT. Cancer risk in mismatch repair gene mutation carriers. Familial Cancer. 2001;1(1):57–60.CrossRefGoogle Scholar
  16. 16.
    Brown GJ, St John DJ, Macrae FA, Aittomaki K. Cancer risk in young women at risk of hereditary nonpolyposis colorectal cancer: implications for gynecologic surveillance. Gynecol Oncol. 2001;80(3):346–9.CrossRefGoogle Scholar
  17. 17.
    Grindedal EM, Renkonen-Sinisalo L, Vasen H, Evans G, Sala P, Blanco I, et al. Survival in women with MMR mutations and ovarian cancer: a multicentre study in lynch syndrome kindreds. J Med Genet. 2010;47(2):99–102.CrossRefGoogle Scholar
  18. 18.
    Win AK, Lindor NM, Young JP, Macrae FA, Young GP, Williamson E, et al. Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst. 2012;104(18):1363–72.CrossRefGoogle Scholar
  19. 19.
    Engel C, Loeffler M, Steinke V, Rahner N, Holinski-Feder E, Dietmaier W, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012;30(35):4409–15.CrossRefGoogle Scholar
  20. 20.
    Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7(3):153–62.CrossRefGoogle Scholar
  21. 21.
    Gwin K, Wilcox R, Montag A. Insights into selected genetic diseases affecting the female reproductive tract and their implication for pathologic evaluation of gynecologic specimens. Arch Pathol Lab Med. 2009;133(7):1041–52.PubMedGoogle Scholar
  22. 22.
    Provenzale D, Gupta S, Ahnen DJ, Bray T, Cannon JA, Cooper G, et al. Genetic/familial high-risk assessment: colorectal version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(8):1010–30.CrossRefGoogle Scholar
  23. 23.
    Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med. 1969;71(4):747–52.CrossRefGoogle Scholar
  24. 24.
    Garber JE, Goldstein AM, Kantor AF, Dreyfus MG, Fraumeni JF Jr, Li FP. Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res. 1991;51(22):6094–7.PubMedGoogle Scholar
  25. 25.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 2 2016;. Accessed 31 July 2016.Google Scholar
  26. 26.
    Tsou HC, Teng DH, Ping XL, Brancolini V, Davis T, Hu R, et al. The role of MMAC1 mutations in early-onset breast cancer: causative in association with Cowden syndrome and excluded in BRCA1-negative cases. Am J Hum Genet. 1997;61(5):1036–43.CrossRefGoogle Scholar
  27. 27.
    Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11(10):687–94.CrossRefGoogle Scholar
  28. 28.
    Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.CrossRefGoogle Scholar
  29. 29.
    Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506.CrossRefGoogle Scholar
  30. 30.
    Ding YC, Steele L, Kuan CJ, Greilac S, Neuhausen SL. Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat. 2011;126(3):771–8.CrossRefGoogle Scholar
  31. 31.
    Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217.CrossRefGoogle Scholar
  32. 32.
    Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010;78(5):490–4.CrossRefGoogle Scholar
  33. 33.
    Benusiglio PR, Malka D, Rouleau E, De Pauw A, Buecher B, Nogues C, et al. CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet. 2013;50(7):486–9.CrossRefGoogle Scholar
  34. 34.
    McVeigh TP, Choi JK, Miller NM, Green AJ, Kerin MJ. Lobular breast cancer in a CDH1 splice site mutation carrier: case report and review of the literature. Clin Breast Cancer. 2014;14(2):e47–51.CrossRefGoogle Scholar
  35. 35.
    Xie ZM, Li LS, Laquet C, Penault-Llorca F, Uhrhammer N, Xie XM, et al. Germline mutations of the E-cadherin gene in families with inherited invasive lobular breast carcinoma but no diffuse gastric cancer. Cancer. 2011;117(14):3112–7.CrossRefGoogle Scholar
  36. 36.
    Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53.CrossRefGoogle Scholar
  37. 37.
    Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15.CrossRefGoogle Scholar
  38. 38.
    Lim W, Olschwang S, Keller JJ, Westerman AM, Menko FH, Boardman LA, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126(7):1788–94.CrossRefGoogle Scholar
  39. 39.
    Hollestelle A, Wasielewski M, Martens JW, Schutte M. Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev. 2010;20(3):268–76.CrossRefGoogle Scholar
  40. 40.
    LaDuca H, Stuenkel AJ, Dolinsky JS, Keiles S, Tandy S, Pesaran T, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med. 2014;16(11):830–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryOhio State UniversityColumbusUSA
  2. 2.The Ohio State University, Surgical Oncology and Human GeneticsColumbusUSA

Personalised recommendations