Skip to main content

New Formalization?

  • Chapter
  • First Online:
From Collective Beings to Quasi-Systems

Part of the book series: Contemporary Systems Thinking ((CST))

  • 309 Accesses

Abstract

This chapter is dedicated to elaborate about eventual formalizations suitable for the post-GOFS. We discuss about the meaning of formalization to consider if the classical understanding is still suitable, looking for validations like theorems and formulations. We will reconsider comments already introduced in Sect. 1.3 about explicit formalization. Shall we consider new approach alternatives to classical formalizations? Which approaches to consider?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Where coherence is considered as evolutionary dynamical structural property and as stable mode of change, while equilibrium is intended as maintaining of properties

  2. 2.

    A signal X 1 is considered to G-cause a signal X 2 when past values of X 1 contain information that helps predict X 2 beyond the information contained in past values of X 2 . The mathematical formulation is based on linear regression modelling of stochastic processes.

References

  • Adamatzky, A., & Komosinski, M. (Eds.). (2010). Artificial life models in hardware. New York, NY: Springer.

    Google Scholar 

  • Ancona, N., Marinazzo, D., & Stramaglia, S. (2004). Radial basis function approaches to nonlinear granger causality of time series. Physical Review E, 70(5), 56221–56227.

    Article  Google Scholar 

  • Arecchi, F. T. (2014). Cognition and language: From apprehension to judgment-quantum conjectures. In G. Nicolis & V. Basios (Eds.), Chaos, information processing and paradoxical games (pp. 319–343). Singapore, Singapore: World Scientific.

    Google Scholar 

  • Arecchi, F. T. (2016). Quantum effects in linguistic endeavors. In G. Minati, M. Abram, & E. Pessa (Eds.), Towards a post-bertelanffy systemics (pp. 3–13). New York, NY: Springer.

    Chapter  Google Scholar 

  • Artikis, A., Picard, G., & Vercouter, L. (Eds.). (2009). Engineering societies in the agents world IX. Berlin, Germany: Springer.

    Google Scholar 

  • Auletta, G., Ellis, G. F. R., & Jaeger, L. (2008). Top-down causation by information control: From a philosophical problem to a scientific research programme. Interface, 5, 1159–1172.

    Google Scholar 

  • Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Bayes, T. (1763). An essay toward solving a problem in the doctrine of chances. In W. E. Deming (Ed.), Philosophical transactions of the royal society of London 53:370–418; reprinted in Biometrika 45:293–315 (1958), and in two papers by Bayes (p. 1963). New York, NY: Hafner.

    Google Scholar 

  • Bellamy, A. J., Williams, P., & Griffin, S. (2010). Understanding peacekeeping. Cambridge, UK: Polity Press.

    Google Scholar 

  • Bensaude-Vincent, B. (2009). Self-assembly, self-organization: Nanotechnology and vitalism. NanoEthics, 3, 31–42.

    Article  Google Scholar 

  • Berinde, V. (2007). Iterative approximation of fixed points. Berlin, Germany: Springer.

    Google Scholar 

  • Bishop, C. (2007). Pattern recognition and machine learning. New York, NY: Springer.

    Google Scholar 

  • Bishop, E. (1967). Foundations of constructive analysis. New York, NY: Academic Press.

    Google Scholar 

  • Blum, K. I. (2014). The actual and the possible. Journal of Physiology, Paris, 108(1), 1–2.

    Article  Google Scholar 

  • Blute, R. F., Ivanov, I. T., & Panangaden, P. (2003). Discrete quantum causal dynamics. International Journal of Theoretical Physics, 42(9), 2025–2041.

    Article  Google Scholar 

  • Bohm, D. (1957). Causality and chance in modern physics. London, UK: Routledge and Kegan Paul Ltd.

    Book  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York, NY: Oxford University Press.

    Google Scholar 

  • Bowles, S., & Gintis, H. (2013). A cooperative species: Human reciprocity and its evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Brody, D. C., & Hughston, L. P. (1997). Generalised Heisenberg relations for quantum statistical estimation. Physics Letters A, 236, 257–262.

    Article  Google Scholar 

  • Brouwer, L. E. J. (1913). Intuitionism and formalism. Bulletin of the American Mathematical Society, 20, 81–96.

    Article  Google Scholar 

  • Brouwer, L. E. J. (1927). Intuitionistic reflections on formalism, English translation. In J. van Heijenoort (Ed.), From Frege to Godel: A source book in mathematical logic,1967 (pp. 490–492). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bucknum, M. J.,& Castro, E. A. (2008). Geometrical-topological correlation in structures. Nature Proceedings. http://precedings.nature.com/documents/1651/version/1/files/npre20081651-1.pdf

  • Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K., & Swinnen, S. P. (2013). Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 7, 726. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817367/

    Article  Google Scholar 

  • Carlin, B. P., & Louis, T. A. (2008). Bayesian methods for data analysis. Boca Raton, FL: Chapman and Hall/CRC press.

    Google Scholar 

  • Chalup, S., Blair, A. D., & Randall, M. (Eds.). (2015). Artificial life and computational intelligence. New York: Springer.

    Google Scholar 

  • Chen, Y., Rangarajan, G., Feng, J., & Ding, M. (2004). Analyzing multiple nonlinear time series with extended granger causality. Physics Letters A, 324(1), 26–35.

    Article  Google Scholar 

  • Coffman, J. A. (2011). On causality in nonlinear complex systems: The developmentalist perspective. In C. Hooker (Ed.), Philosophy of complex systems (pp. 287–310). Oxford, UK: Elsevier.

    Chapter  Google Scholar 

  • Collier, J. (2011). Information, causation and computation. In G. Didig-Crnkovic & M. Burgin (Eds.), Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation (pp. 89–105). Singapore, Singapore: World Scientific.

    Chapter  Google Scholar 

  • Cruchtfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D, 75, 11–54.

    Article  Google Scholar 

  • Dehuri, S., Jagadev, A. K., & Panda, M. (Eds.). (2015). Multi-objective swarm intelligence: Theoretical advances and applications. New York, NY: Springer.

    Google Scholar 

  • Diettrich, O. (2001). A physical approach to the construction of cognition and to cognitive evolution. Foundations of Science, 6(4), 273–341.

    Article  Google Scholar 

  • Diettrich, O. (2004). Cognitive evolution. In C. Antweiler & F. M. Wuketits (Eds.), Handbook of evolution (Vol. 1, pp. 25–75). Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Diettrich, O. (2006). The biological boundary conditions for our classical physical world view. In N. Gontier, D. Aerts, & J.-P. Van Bendegem (Eds.), Evolutionary epistemology, language and culture. A non-adaptionist, systems theoretical approach (pp. 67–93). New York, NY: Springer.

    Chapter  Google Scholar 

  • Forster, A. C., Liljeruhm, J., & Gullberg, E. (2014). Synthetic biology: A lab manual. Singapore, Singapore: World Scientific.

    Google Scholar 

  • Friedl, P., Locker, J., Sahai, E., & Segall, J. E. (2012). Classifying collective cancer cell invasion. Nature Cell Biology, 14, 777–783.

    Article  Google Scholar 

  • Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C., & Vedral, V. (2011). Sustained quantum coherence and entanglement in the avian compass. Physics Review Letter, 106(4), 040503–040507.

    Article  Google Scholar 

  • Germar, M., Schlemmer, A., Krug, K., Voss, A., & Mojzisch, A. (2014). Social influence and perceptual decision making: A diffusion model analysis. Personality and Social Psychology Bulletin, 40(2), 217–231.

    Article  Google Scholar 

  • Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist. Buckingham, UK: Open University Press.

    Google Scholar 

  • Gödel, K. (1931). Ueber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math. Physik, 38, 178–198.

    Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

    Article  Google Scholar 

  • Granger, C. W. J. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, Vol., 2(1), 329–352.

    Article  Google Scholar 

  • Helbing, D., Yu, W., & Rauhut, H. (2011). Self-organization and emergence in social systems: Modeling the coevolution of social environments and cooperative behavior. The Journal of Mathematical Sociology, 35(1–3), 177–208.

    Article  Google Scholar 

  • Hemelrijk, C. (Ed.). (2005). Self-organisation and evolution of biological and social systems. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Heyting, A. (1975). Collected works. In L. E. J. Brouwer (Ed.), Philosophy and foundations of mathematics (Vol. 1). Amsterdam, The Netherlands/New York, NY: Elsevier.

    Google Scholar 

  • Hilbert, D. (2013). The foundations of geometry. Charleston, SC: Reprinted by BiblioLabs LLC.

    Google Scholar 

  • Huang, K. (1998). Quantum field theory: From operators to path integrals. New York, NY: Wiley.

    Book  Google Scholar 

  • Huepe, C., Zschaler, G., Do, A. L., & Gross, T. (2011). Adaptive network models of swarm dynamics. New Journal of Physics, 13, 073022–073030.

    Article  Google Scholar 

  • Ibarra, A., & Martiñón, S. (2009). Pharmacological approaches to induce neuroregeneration in spinal cord injury: An overview. Current Drug Discovery Technologies, 6(2), 82–90.

    Article  Google Scholar 

  • Illari, P., & Russo, F. (2014). Causality: Philosophical theory meets scientific practice. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Iooss, G., & Joseph, D. D. (2012). Elementary stability and bifurcation theory. New York, NY: Springer.

    Google Scholar 

  • Itzykson, C., & Zuber, J. B. (1986). Quantum field theory. Singapore, Singapore: McGraw-Hill.

    Google Scholar 

  • Kaebnick, G. E., & Murray, T. H. (2013). Synthetic biology and morality: Artificial life and the bounds of nature. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Kelso, J. A. S. (1995). Dynamic patterns. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kent, A. (2005). Causal quantum theory and the collapse locality loophole. Physical Review A, 72(1), 12107–121013.

    Article  Google Scholar 

  • Kiselev, V. G., Shnir, Y. M., & Tregubovich, A. Y. (2000). Introduction to quantum field theory. Amsterdam, The Netherlands: Gordon and Breach.

    Book  Google Scholar 

  • Kleinberg, S. (2012). Causality, probability, and time. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Kobayashi, Y., & Ohtsuki, H. (2014). Evolution of social versus individual learning in a subdivided population revisited: Comparative analysis of three coexistence mechanisms using the inclusive-fitness method. Theoretical Population Biology, 92, 78–87.

    Article  Google Scholar 

  • Kohli, R. K., Jose, S., & Singh, H. P. (Eds.). (2008). Invasive plants and forest ecosystems. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Komosinski, M., & Adamatzky, A. (Eds.). (2014). Artificial life models in software. New York, NY: Springer.

    Google Scholar 

  • Kulkarni, S. K. (2014). Nanotechnology: Principles and practices. New York, NY: Springer.

    Google Scholar 

  • Kyung-Joong, K., & Sung-Bae, C. (2006). A comprehensive overview of the applications of artificial life. Artificial Life, 12(1), 153–182.

    Article  Google Scholar 

  • Lahiri, A., & Pal, P. B. (2001). A first book of quantum field theory. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lewis, T. G. (2009). Network science: Theory and applications. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Licata, I. (2010). Almost- anywhere theories. Reductionism and universality of emergence. Complexity, 2010, 15(6), 11–19.

    Google Scholar 

  • Lloret-Climent, M., & Nescolarde-Selva, J. (2014). Data analysis using circular causality in networks. Complexity, 19(4), 15–19.

    Article  Google Scholar 

  • Longo, G. (2003). The constructed objectivity of mathematics and the cognitive subject. In M. Mugur-Schachter & A. Van Der Merwe (Eds.), Quantum mechanics, mathematics, cognition and action: Proposals for a formalized epistemology (pp. 433–463). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Longo, G. (2005). The reasonable effectiveness of mathematics and its cognitive roots. In L. Boi (Ed.), New interactions of mathematics with natural sciences and the humanities (pp. 351–382). Singapore, Singapore: World Scientific.

    Google Scholar 

  • Maggiore, M. (2005). A modern introduction to quantum field theory. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Marsland, S. (2014). Machine learning: An algorithmic perspective. Boca Raton, FL: Chapman and Hall/CRC press.

    Book  Google Scholar 

  • Maruyama, M. (1963). The second cybernetics: Deviation-amplifying mutual causal processes. American Scientist, 51, 164–179.

    Google Scholar 

  • Miller, V. L. (2013). Bacterial invasiveness (current topics in microbiology and immunology). Berlin, Germany: Springer.

    Google Scholar 

  • Minati, G. (2012). Knowledge to manage the knowledge society. The Learning Organisation, 19(4), 352–370.

    Google Scholar 

  • Minati, G. (2016). General system(s) theory 2.0: A brief outline. In G. Minati, M. Abram, & E. Pessa (Eds.), Towards a post-Bertalanffy systemics. New York, NY: Springer.

    Chapter  Google Scholar 

  • Minati, G., & Licata, I. (2013). Emergence as Mesoscopic coherence. System, 1(4), 50–65. http://www.mdpi.com/2079-8954/1/4/50

    Article  Google Scholar 

  • Minati, G., & Licata, I. (2015). Meta-structures as MultiDynamics systems approach. Some introductory outlines. Journal on Systemics, Cybernetics and Informatics (JSCI), 13(4), 35–38.

    Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings. New York, NY: Springer.

    Google Scholar 

  • Moeller, H.-G. (2011). The radical Luhmann. New York, NY: Columbia University Press.

    Google Scholar 

  • Mumford, S., & Anjum, R. L. (2013). Causation: A very short introduction. Oxford, UK: Oxford University Press Oxford.

    Book  Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. New York, NY: Wiley.

    Google Scholar 

  • O'Connor, S. S. (2013). The Prisoner's dilemma. Hunts, UK: Zero Books.

    Google Scholar 

  • Ott, E. (2002). Chaos in Dynamical Systems. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Otumba, E. (2011). Evolutionary stable strategies. Saarbrücken, Germany: LAP Lambert Academic Publishing GmbH & KG.

    Google Scholar 

  • Pearl, J. (2009). Causality: Models, reasoning, and inference. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Peskin, M. E., & Schroeder, D. V. (1995). An introduction to quantum field theory. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Pessa, E. (1998). Emergence, self-organization, and quantum theory. In G. Minati (Ed.), Proceedings of the first Italian conference on systemics. Milano, Italy: Apogeo scientifica.

    Google Scholar 

  • Pessa, E. (2000). Cognitive modelling and dynamical systems theory. La Nuova Critica, 35, 53–93.

    Google Scholar 

  • Pessa, E. (2006). Physical and biological emergence: Are they different? In G. Minati, E. Pessa, & M. Abram (Eds.), Systemics of emergence. Research and development (pp. 355–374). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Pessa, E. (2008). Phase transitions in biological matter. In I. Licata & A. Sakaji (Eds.), Physics of emergence and organization (pp. 165–228). Singapore, Singapore: World Scientific.

    Chapter  Google Scholar 

  • Rendell, L., Fogarty, L., & Laland, K. N. (2010). Rogers’ paradox recast and resolved: Population structure and the evolution of social learning strategies. Evolution, 64(2), 534–548.

    Article  Google Scholar 

  • Rieper, E. (2011). Quantum coherence in biological systems. Ph.D. Thesis, Centre for Quantum Technologies, National University of Singapore.

    Google Scholar 

  • Robinson, A. (1996). Non-standard analysis. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Rogers, A. R. (1988). Does biology constrain culture. American Anthropologist, 90(4), 819–831.

    Article  Google Scholar 

  • Rosen, R. (1985). Anticipatory systems (2nd ed.). New York, NY: Pergamon Press/Springer. 2012.

    Google Scholar 

  • Sawyer, R. K. (2005). Social emergence: Societies as complex systems. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Sewell, G. L. (1986). Quantum theory of collective phenomena. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Siffert, P., & Krimmel, E. (Eds.). (2010). Silicon: Evolution and future of a technology. New York, NY: Springer.

    Google Scholar 

  • Sigmund, K. (2010). The calculus of selfishness. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Sigmund, K. (Ed.). (2011a). Evolutionary game dynamics. New Orleans, LA: American Mathematical Society.

    Google Scholar 

  • Sigmund, K. (2011b). Introduction to evolutionary game theory. In K. Sigmund (Ed.), Evolutionary game dynamics (pp. 1–26). New Orleans, LA: American Mathematical Society.

    Chapter  Google Scholar 

  • Simpson, S. G. (1988). Partial realizations of Hilbert's program. Journal of Symbolic Logic, 53, 349–363.

    Article  Google Scholar 

  • Singh, V., & Dhar, P. K. (2015). Systems and synthetic biology. New York, NY: Springer.

    Book  Google Scholar 

  • Sokolowski, A. J., & Banks, C. M. (Eds.). (2009). Principles of modeling and simulation: A multidisciplinary approach. Hoboken, NJ: Wiley.

    Google Scholar 

  • Stiglitz, J. E., & Rosengard, J. K. (2015). Economics of the public sector. New York, NY: W. W Norton & Company.

    Google Scholar 

  • Stone, M. (2000). The physics of quantum fields. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Sumpter, D. J. T. (2010). Collective animal behavior. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Takashi, K., Li, J., & Aihara, K. (2014). Silicon neuronal networks towards brain-morphic computers. The Institute of Electronics, Information and Communication Engineers (IEICE), 5(3), 379–390.

    Google Scholar 

  • Terano, T., Kita, H., Kaneda, T., Arai, K., & Deguchi, H. (Eds.). (2005). Agent-based simulation: From modeling methodologies to real-world applications. Berlin, Germany: Springer.

    Google Scholar 

  • Umezawa, H. (1993). Advanced field theory. Micro, macro, and thermal physics. New York, NY: American Institute of Physics.

    Google Scholar 

  • Valente, T. W. (2012). Network interventions. Science, 337(6090), 49–53.

    Article  Google Scholar 

  • Valery, P. (1935). Cahiers (Vol. II, p. 811). Paris, France: Gallimard.

    Google Scholar 

  • Van Dalen, D. (Ed.). (1981). Brouwer's Cambridge lectures on intuitionism. New York, NY: Cambridge University Press.

    Google Scholar 

  • Van Stigt, W. P. (Ed.). (1990). Brouwer's intuitionism. Amsterdam, The Netherlands: North-Holland.

    Google Scholar 

  • Vincent, T. L., & Brown, J. S. (2012). Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Von Bertalanffy, L. (1968). General systems theory. New York, NY: Braziller.

    Google Scholar 

  • Von Foerster, H. (1981). Observing systems. Seaside, CA: Intersystems Publications.

    Google Scholar 

  • Von Glasersfeld, E. (Ed.). (1991a). Radical constructivism in mathematics education. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Von Glasersfeld, E. (1991b). Knowing without metaphysics. Aspects of the radical constructivist position. In F. Steier (Ed.), Research and reflexivity (pp. 12–29). London, UK / Newbury Park, CA: Sage.

    Google Scholar 

  • Von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. London, UK: Falmer Press.

    Book  Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior (60th anniversary commemorative edition). Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Wang, D., & Ma, S. (2010). A new model of neuron connection. International Conference on Computing, Networking and Communications (CNC), 2, 1048–1052.

    Google Scholar 

  • Wasserfall, C. H., & Herzog, R. W. (2009). Gene therapy approaches to induce tolerance in autoimmunity by reshaping the immune system. Current Opinion in Investigational Drugs, 10(11), 1143–1150.

    Google Scholar 

  • Weinberg, S. (1995). The quantum theory of fields (Vol. 1). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Weinberg, S. (1996). The quantum theory of fields (Vol. 2). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Werner, J. A., & Davis, R. K. (2014). Metastases in head and neck cancer. New York, NY: Springer.

    Google Scholar 

  • Whitehead, A. N., & Russell, B. (1910). Principia mathematica (Vol. 1). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Whitehead, A. N., & Russell, B. (1912). Principia mathematica (Vol. 2). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Whitehead, A. N., & Russell, B. (1913). Principia mathematica (Vol. 3). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Wigner, P. E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13, 1–14.

    Article  Google Scholar 

  • Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm intelligence and bio-inspired computation. London, UK: Elsevier.

    Book  Google Scholar 

  • Zhang, C., & Ma, Y. (2014). Ensemble machine learning: Methods and applications. New York, NY: Springer.

    Google Scholar 

Web Resources (Note: in some Internet sources the date of publication is not indicated)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minati, G., Pessa, E. (2018). New Formalization?. In: From Collective Beings to Quasi-Systems. Contemporary Systems Thinking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7581-5_5

Download citation

Publish with us

Policies and ethics