Skip to main content

From Collective Beings to Quasi-systems

  • Chapter
  • First Online:

Part of the book series: Contemporary Systems Thinking ((CST))

Abstract

This chapter is dedicated to explore among different post-GOFS systemic properties of different nature like ones considered above and based on the concepts of quasi already used in different disciplines since long time. The concept of quasi relates here to quasi-systems, quasi-dynamic coherence and the passage from Multiple Systems-Collective Beings to Quasi-Multiple Systems-Quasi-Collective Beings. The simplified idea assumed by GOFS to deal with systems or nonsystems is unsuitable and having reductionist aspects when dealing with complex systems and multiple phenomena of emergence, having structural dynamics and levels of coherence where DYSAM-like approaches are more appropriated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We like to recall here how some of the conceptual keywords we are considering here for a post-GOFS were introduced in literature by Italo Calvino in the book Calvino, I., 1988, Six Memos for the Next Millennium. Harvard University Press, Cambridge, MA, in this order: Lightness, Quickness, Exactitude, Visibility, Multiplicity, Consistency.

  2. 2.

    See note 1 above.

  3. 3.

    Same meta-structural property will be considered to give eventual rise to different meta-structural properties depending on different parametrical values.

  4. 4.

    Since the multiplicity of emergent quasi-systems is here only supposed as approach and analytically unrecognisable in collective behaviours, their number should be also supposed as given by the number of meta-structural properties valid per instant and along time, however, considered coincident when differentiated only by parametrical values.

References

  • Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F., & Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77(19), 137–185.

    Article  Google Scholar 

  • Alexander, C. (1979). The timeless way of building. New York, NY: Oxford University Press.

    Google Scholar 

  • Anderson, J. J. (1980). A stochastic model for the size of fish schools. Fish Bulletin, 79, 315–323.

    Google Scholar 

  • Bajec, I. L., Zimic, N., & Mraz, M. (2005). Simulating flocks on the wing: The fuzzy approach. Journal of Theoretical Biology, 233(2), 199–220.

    Article  Google Scholar 

  • Bajec, I. L., Zimic, N., & Mraz, M. (2007). The computational beauty of flocking: Boids revisited. Mathematical and Computer Modelling of Dynamical Systems, 13(4), 331–347.

    Article  Google Scholar 

  • Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., … Zdravkovic, V. (2008). Empirical investigation of starling flocks: A benchmark study in collective animal behaviour. Animal Behavior, 76(1), 201–215.

    Article  Google Scholar 

  • Barrè, J., Dauxois, T., & Ruffo, S. (2001). Clustering in a model with repulsive long-range interactions. Physica A, 295, 254–260.

    Article  Google Scholar 

  • Bartha, P. (2010). By parallel reasoning: The construction and evaluation of analogical arguments. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Baulin, V. A., Marques, C. M., & Thalmann, F. (2007). Collision induced spatial organization of microtubules. Biophysical Chemistry, 128, 231–244.

    Article  Google Scholar 

  • Baum, M., & Christiaanse, K. (2014). City as loft: Adaptive reuse as a resource for sustainable urban development. Zürich, Switzerland: gta Verlag.

    Google Scholar 

  • Beurling, A. (1989). Quasi-analyticity. In L. Carleson (Ed.), Collected works of arne beurling, Vol. 1 -Contemporary mathematicians (pp. 396–431). Boston, MA: Birkhauser Boston Inc.

    Google Scholar 

  • Blavatska, V. (2013). Equivalence of quenched and annealed averaging in models of disordered polymers. Journal of Physics Condensed Matter, 25(50), 505101–505104.

    Article  Google Scholar 

  • Boccaletti, S. (2008). The synchronized dynamics of complex systems. Oxford, UK.: Elsevier.

    Book  Google Scholar 

  • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhouc, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366(1–2), 1–101.

    Article  Google Scholar 

  • Boltzmann, L. (1871). Einige allgemeine Sätze über Wärmegleichgewicht. Wiener Berichte, 63, 679–711.

    Google Scholar 

  • Boltzmann, L. (1884a). Über die Möglichkeit der Begründung einer kinetischen Gastheorie auf anziehende Kräfte allein. Wiener Berichte, 89, 714–722.

    Google Scholar 

  • Boltzmann, L. (1884b). Über eine von Hrn. Bartoli entdeckte Beziehung der Wärmestrahlung zum zweiten Hauptsatze. Wiedemann’s Annalen für Physik und Chemie, 22, 31–39.

    Article  Google Scholar 

  • Bonabeau, E., & Theraulaz, G. (1994). Why do we need artificial life? Artificial Life, 1, 303–325.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (1996). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London B, 263, 1565–1569.

    Article  Google Scholar 

  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Breder, C. M. (1954). Equations descriptive of fish schools and other animal aggregations. Ecology, 35, 361–370.

    Article  Google Scholar 

  • Carrillo, O., Ibañes, M., García-Ojalvo, J., Casademunt, J., & Sancho, J. M. (2003). Intrinsic noise-induced phase transitions: Beyond the noise interpretation. Physical Review E, 67(046110), 1–9.

    Google Scholar 

  • Carroll, J. B., Levinson, S. C., & Lee, P. (Eds.). (2012). Language, thought, and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., & Viale, M. (2010). Scale-free correlations in starling flocks. Proceeding of the National Academy of Sciences of the United States of America, 107, 11865–11870.

    Article  Google Scholar 

  • Cesario, A., et al. (2014). A systems medicine clinical platform for understanding and management of non communicable diseases. Current Pharmaceutical Design, 20(38), 5945–5945.

    Article  Google Scholar 

  • Ciszak, M., Euzzor, S., Geltrude, A., Arecchi, F. T., & Meucci, R. (2013). Noise and coupling induced synchronization in a network of chaotic neurons. Communications in Nonlinear Science and Numerical Simulation, 18, 938–945.

    Article  Google Scholar 

  • Coppersmith, D., & Wu, C. W. (2008). Conditions for weak ergodicity of inhomogeneous Markov chains. Statistics & Probability Letters, 78(17), 3082–3085.

    Article  Google Scholar 

  • Cornfeld, I. P., & Fomin, S. V. (1982). Ergodic theory. New York, NY: Springer.

    Book  Google Scholar 

  • Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.

    Article  Google Scholar 

  • Craddock, T. J. A., & Tuszynski, J. A. (2010). A critical assessment of the information processing capabilities of neuronal microtubules using coherent excitations. Journal of Biological Physics, 36, 53–70.

    Article  Google Scholar 

  • Cucker, F., & Smale, S. (2007). Emergent behavior in flocks. Automatic Control, IEEE Transactions, 52(5), 852–862.

    Article  Google Scholar 

  • Cziròk, A., Barabasi, A.-L., & Vicsek, T. (1999). Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Physical Review Letter, 82(1), 209–212.

    Article  Google Scholar 

  • Darling, F. F. (1938). Bird flocks and the breeding cycle. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • de la Motte, D. (1981). Kontrapunkt - Ein Lese- und Arbeitsbuch. Kassel, Germany: Bärenreiter-Verlag.

    Google Scholar 

  • Deneubourg, J. L., Aron, S., Goss, S., & Pasteels, J. M. (1990). Self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 32, 159–168.

    Article  Google Scholar 

  • Deneubourg, J. L., & Goss, S. (1989). Collective patterns and decision-making. Ethology Ecology & Evolution, 1, 295–331.

    Article  Google Scholar 

  • Deneubourg, J. L., Goss, S., Franks, N., & Pasteels, J. M. (1989). The blind leading the blind: Modeling chemically mediated army ant raid patterns. Journal of Insect Behavior, 23, 719–725.

    Article  Google Scholar 

  • Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chretien, L. (1991). The dynamics of collective sorting: Robot-like ant and ant-like robot. In J. A. Meyer & S. W. Wilson (Eds.), Proceedings of SAB90-first conference on simulation of adaptive behavior: From animals to animats (pp. 356–365). Cambridge, MA: MIT Press/Bradford Books.

    Google Scholar 

  • Deneubourg, J. L., Goss, S., Pasteels, J. M., Fresneau, D., & Lachaud, J. P. (1987). Self-organization mechanisms in ant societies (II): Learning in foraging and division of labor. In J. M. Pasteels & J. L. Deneubourg (Eds.), From individual to collective behavior in social insects (pp. 177–196). Basel, Switzerland: Birkhausser.

    Google Scholar 

  • Deneubourg, J. L., Pasteels, J. M., & Verhaeghe, J. C. (1983). Probabilistic behavior in ants: A strategy of errors. Journal of Mathematical Biology, 105, 259–271.

    Google Scholar 

  • Deymier, P. A., Yang, Y., & Hoying, J. (2005). Effect of tubulin diffusion on polymerization of microtubules. Physical Review E, 72(2), 021906. 1–7.

    Article  Google Scholar 

  • Echelle, A. A., & Kornfield, I. (Eds.). (1984). Evolution of fish species flocks. Orono, ME: University of Maine Press.

    Google Scholar 

  • Eisenman, P., & Lacan, J. (2006). Architecture and psychoanalysis. New York, NY: Peter Lang.

    Google Scholar 

  • Ellis, N. C., & Larsen-Freeman, D. (Eds.). (2010). Language as a complex adaptive system. Chichester, UK: Wiley-Blackwell.

    Google Scholar 

  • Fairweather, L., & McConville, S. (2000). Prison architecture. New York, NY: Architectural Press.

    Google Scholar 

  • Falkenburg, B., & Morrison, M. (Eds.). (2014). Why more is different: Philosophical issues in condensed matter physics and complex systems. New York, NY: Springer.

    Google Scholar 

  • Federal Facilities Council. (2002). Learning from our buildings: A state-of-the-practice summary of post-occupancy evaluation. Washington, DC: National Academy Press.

    Google Scholar 

  • Fogedby, H. C. (1998). Soliton approach to the noisy burgers equation. Steepest descent method. Physical Review E, 57(5), 4943–4968.

    Article  Google Scholar 

  • Fogedby, H. C., & Brandenburg, A. (1999). Solitons in the noisy burgers equation. Computer Physics Communications, 121–122, 382–385.

    Article  Google Scholar 

  • Franks, N. R., Gomez, N., Goss, S., & Deneubourg, J. L. (1991). The blind leading the blind: Testing a model of self-organization (Hymenoptera: Formicidae). Journal of Insect Behavior, 4, 583–607.

    Article  Google Scholar 

  • Geddes, P. (1915). Cities in evolution. London, England: Williams & Norgate.

    Google Scholar 

  • Gentner, D., Holyoak, K., & Kokinov, B. (Eds.). (2001). The analogical mind: Perspectives from cognitive science. Cambridge, UK: MIT Press.

    Google Scholar 

  • Glade, N. (2012). On the nature and shape of tubulin trails: Implications on microtubule self-organization. Acta Biotheoretica, 60, 55–82.

    Article  Google Scholar 

  • Goss, S., Beckers, R., Deneubourg, J.-L., Aron, S., & Pasteels, J. M. (1990). How trail laying and trail following can solve foraging problems for ant colonies. In R. N. Hughes (Ed.), Behavioral mechanisms of food selection (pp. 661–678). Berlin/Heidelberg, Germany: Springer.

    Chapter  Google Scholar 

  • Graham, R., & Haken, H. (1969). Analysis of quantum field statistics in laser media by means of functional stochastic equations. Physics Letters A, 29, 530–531.

    Article  Google Scholar 

  • Guttal, V., & Couzin, I. D. (2010). Social interactions, information use and the evolution of collective migration. PNAS, 107(37), 16172–16177.

    Article  Google Scholar 

  • Haken, H. (1987). Synergetics: An approach to self-organization. In F. E. Yates (Ed.), Self-organizing systems: The emergence of order (pp. 417–434). New York, NY: Plenum.

    Chapter  Google Scholar 

  • Haken, H. (1988). Information and self-organization. A macroscopic approach to complex systems. Berlin, Germany: Springer.

    Google Scholar 

  • Handegard, N. O., Boswell, K. M., Ioannou, C. C., Leblanc, S. P., Tjøstheim, D. B., & Couzin, I. D. (2012). The dynamics of coordinated group hunting and collective information transfer among schooling prey. Current Biology, 22(13), 1213–1217.

    Article  Google Scholar 

  • Helbing, D., Farkás, I. J., Molnár, P., & Vicsek, T. (2002). Simulation of pedestrian crowds in normal and evacuation situations. In M. Schreckenberg & S. D. Sharma (Eds.), Pedestrian and evacuation dynamics (pp. 21–58). Berlin, Germany: Springer.

    Google Scholar 

  • Hemelrijk, C. K., & Hildenbrandt, H. (2011). Some causes of the variable shape of flocks of birds. PLoS ONE, 6(8). http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0022479

  • Henkel, M. (2002). Phenomenology of local scale invariance: From conformal invariance to dynamical scaling. Nuclear Physics B, 641(3), 405–486.

    Article  Google Scholar 

  • Hillier, B., & Leaman, A. (1974). How is design possible? Journal of Architectural Resesarch, 3(1), 4–11.

    Google Scholar 

  • Holland, J. H., Holyoak, K. Y., Nisbett, R. E., & Thagard, P. R. (1986). Induction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Holldobler, B., & Wilson, E. O. (1990). The ants. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Horsthemke, W., & Lefever, R. (2006). Noise-induced transitions: Theory and applications in physics, chemistry, and biology. Berlin/Heidelberg, Germany/New York, NY: Springer.

    Google Scholar 

  • Howen, H. (1992). Modal and tonal counterpoint from josquin to strawinskj. Belmont, CA: Wadsworth Group/Thomson Learning.

    Google Scholar 

  • Huepe, C., & Aldana, M. (2011). New tools for characterizing swarming systems: A comparison of minimal models. Journal of Physics A, 387, 2809–2822.

    Google Scholar 

  • Huth, A., & Wissel, C. (1992). The simulation of the movement of fish schools. Journal of Theorical Biology, 156, 365–385.

    Article  Google Scholar 

  • Janot, C. (2012). Quasicrystals: A primer. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Jeschke, J. M., & Tollrian, R. (2005). Effects of predator confusion on functional responses. Oikos, 111, 547–555.

    Article  Google Scholar 

  • Jeschke, J. M., & Tollrian, R. (2007). Prey swarming: Which predators become confused and why? Animal Behaviour, 74(3), 387–393.

    Article  Google Scholar 

  • Jülicher, F., Kruse, K., Prost, J., & Joanny, J.-F. (2007). Active behavior of the cytoskeleton. Physics Reports, 449, 3–28.

    Article  Google Scholar 

  • Kauffman, A. S. (1993). The origins of order: Self-organization and selection in evolution. New York, NY: Oxford University Press.

    Google Scholar 

  • Keskin, M., & Ekiz, C. (2000). The metastable phase diagram of the Blume–Emery–Griffiths model in addition to the equilibrium phase diagram. Journal of Chemical Physics, 113(13), 5407–5412.

    Article  Google Scholar 

  • Ki, G., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabasi, A. L. (2007). The human disease network. Proceedings of the National Academy of Science, USA, 104, 8685–8690.

    Article  Google Scholar 

  • Klinger, M. I. (2013). Glassy disordered systems: Glass formation and universal anomalous low-energy properties. Singapore, Singapore: World Scientific.

    Book  Google Scholar 

  • Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Kotelyanskii, M., Veytsman, B., & Kumar, S. K. (1998). Phase behavior of associating liquid mixtures, physical. Review E, 58(1), 12–15.

    Google Scholar 

  • Kovecses, Z. (2010). Metaphor: A practical introduction. New York, NY: Oxford University Press.

    Google Scholar 

  • Krakauer, D. C. (1995). Groups confuse predators by exploiting perceptual bottlenecks: A connectionist model of the confusion effect. Behavioral Ecology and Sociobiology, 36, 421–429.

    Article  Google Scholar 

  • Krause, J., & Ruxton, G. D. (2002). Living in groups. New York, NY: Oxford University Press.

    Google Scholar 

  • Lei, Y. J., & Leng, Y. S. (2010). Force oscillation and phase transition of simple fluids under confinement. Physical Review E, 82(4), 40501–40505.

    Article  Google Scholar 

  • Lesne, A., & Laguës, M. (2011). Scale invariance: From phase transitions to turbulence. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Levis, C., Johnson, J. T., & Teixeira, F. L. (2010). Radiowave propagation: Physics and applications. Hoboken, NJ: Wiley-Blackwell.

    Google Scholar 

  • Lindauer, M. (1961). Communication among social bees. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Marro, J., Torres, J. J., & Cortés, J. M. (2007). Chaotic hopping between attractors in neural networks. Neural Networks, 20(2), 230–235.

    Article  Google Scholar 

  • Marshall, S. (2009). Cities, design and evolution. Oxford, UK/ New York, NY: Routledge.

    Google Scholar 

  • Mikhailov, A. S., & Calenbuhr, V. (2002). From cells to societies. Models of complex coherent actions. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Mikhailov, A. S., & Loskutov, A.,. Y. (2012). Foundations of Synergetics II:. Complex patterns. Berlin, Germany: Springer.

    Google Scholar 

  • Millonas, M. M. (1992). Connectionist type model of self-organized foraging and emergent behaviour in ant swarms. Journal of Theoretical Biology, 159, 529–542.

    Article  Google Scholar 

  • Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton (Ed.), Artificial life III (pp. 417–445). Reading, MA: Addison-Welsey.

    Google Scholar 

  • Minati, G. (2016). Knowledge to manage the knowledge society: The concept of theoretical incompleteness. Systems, 4(3), 1–19. http://www.mdpi.com/2079-8954/4/3/26/pdf

    Article  Google Scholar 

  • Minati, G., & Collen, A. (2009). Architecture as the cybernetic self-design of boundary conditions for emergent properties in human social systems. Cybernetics & Human Knowing, 16(1–2), 101–123.

    Google Scholar 

  • Minati, G., & Licata, I. (2012). Meta-structural properties in collective behaviours. The International Journal of General Systems, 41(3), 289–311.

    Article  Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings (pp. 291–313). New York, NY: Springer.

    Google Scholar 

  • Minati, L., de Candia, A., & Scarpetta, S. (2016). Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity. CHAOS, 26, 073103–073111.

    Article  Google Scholar 

  • Morgan, S. (2009). Waste, recycling and reuse. London, UK: Evans Brothers Ltd..

    Google Scholar 

  • Mori, H., & Kuramoto, Y. (2011). Dissipative structures and chaos. New York, NY: Springer.

    Google Scholar 

  • Motter, A. E., & Albert, R. (2012). Networks in motion. Physics Today, 65(4), 43.

    Article  Google Scholar 

  • Mülken, O., & Blumen, A. (2011). Continuous-time quantum walks: Models for coherent transport on complex networks. Physics Reports, 502, 37–87.

    Article  Google Scholar 

  • Nicosia, V., Bianconi, G., Latora, V., & Barthelemy, M. (2013). Growing multiplex networks. Physical Review Letters, 111(058701), 1–5.

    Google Scholar 

  • Olson, R. S., Hintze, A., Dyer, F. C., Knoesterm, D. B., & Adami, C. (2013). Predator confusion is sufficient to evolve swarming behaviour. Interface, 10(6), 1–8.

    Google Scholar 

  • Pan, J. Z., Staab, S., & Aßmann, U. (Eds.). (2012). Ontology-driven software development. Berlin, Germany: Springer.

    Google Scholar 

  • Parisi, G. (1998). Statistical field theory. New York, Germany: Perseus Books.

    Google Scholar 

  • Patel, D. M., & Fredrickson, G. H. (2003). Quenched and annealed disorder in randomly grafted copolymer melts. Physical review E, 68(5), 51802–51812.

    Article  Google Scholar 

  • Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Peirce, C. S. (1998). Harvard lectures on pragmatism. In N. Houser, J. R. Eller, A. C. Lewis, A. De Tienne, C. L. Clark, & D. B. Davis (Eds.), The essential peirce: Selected philosophical writings, 1893–1913 (pp. 133–241). Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Petersen, K. E. (1989). Ergodic theory. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. (cambridge nonlinear science series). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Pogromsky, A., Santoboni, G., & Nijmeijer, H. (2002). Partial synchronization: From symmetry towards stability. Physica D, 172, 65–87.

    Article  Google Scholar 

  • Pruessner, G. (2012). Self-organised criticality: Theory, models and characterisation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Pulliam, H. R. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38, 419–422.

    Article  Google Scholar 

  • Pulliam, H. R., & Caraco, T. (1984). Living in groups: Is there an optimal group size? In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (Vol. 2, pp. 122–147). Oxford, UK: Blackwell Scientific.

    Google Scholar 

  • Quinn, M. J., Metoyer, R. A., & Hunter-Zaworski, K. (2003). Parallel implementation of the social forces model. In E. R. Galea (Ed.), Pedestrian and evacuation dynamics 2003 (pp. 63–74). London, UK: CMS Press. http://eecs.oregonstate.edu/gait/pubs/QuinnFinal.pdf.

    Google Scholar 

  • Resconi, G., & Licata, I. (2014). Beyond an input/output paradigm for systems: Design systems by intrinsic geometry. Systems, 2(4), 661–686. http://www.mdpi.com/2079-8954/2/4/661.

    Article  Google Scholar 

  • Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21, 25–34.

    Article  Google Scholar 

  • Reynolds, C. (2006). Big fast crowds on PS3. In Sandbox ’06 proceedings of the 2006 ACM SIGGRAPH symposium on videogames (pp. 113–121). New York, NY: ACM. http://www.research.scea.com/pscrowd/PSCrowdSandbox2006.pdf.

    Chapter  Google Scholar 

  • Saggio, G. (2014). Principles of analog electronics. Boca Raton, FL: CRC Press.

    Google Scholar 

  • San Miguel, M., & Toral, R. (2000). Stochastic effects in physical systems. In E. Tirapegui, J. Martinez, & R. Tiemann (Eds.), Instabilities and nonequilibrium structures VI (pp. 35–130). New York, NY: Kluwer.

    Chapter  Google Scholar 

  • Sapir, E. (1929). The status of linguistics as a science. Language, 5, 207–214. (Reprinted in Selected writings of Edward Sapir, pp. 34–41, by D. G. Mandelbaum, Ed., 1949. Berkeley: University of California Press.

    Article  Google Scholar 

  • Schaller, G. (2014). Open quantum systems far from equilibrium. New York, NY: Springer.

    Book  Google Scholar 

  • Sethna, J. (2006). Statistical mechanics: Entropy, order parameters and complexity. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Sewell, G. L. (2002). Quantum mechanics and its emergent macrophysics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Slowik, M. (2012). Metastability in stochastic dynamics. Saarbrücken, Germany: Südwestdeutscher Verlag Fur Hochschulschriften AG.

    Google Scholar 

  • Sumpter, D. J. T. (2010). Collective animal behavior. Princeton, NY: Princeton University Press.

    Book  Google Scholar 

  • Sundstrom, E., Bell, P. A., Busby, P. L., & Asmus, C. (1996). Environmental psychology 1989–1994. In M. R. Rosenzweig & L. W. Porter (Eds.), Annual Review of Psychology (Vol. 47, pp. 485–512). Palo Alto, CA: Annual Reviews.

    Google Scholar 

  • Szmoski, R. M., Ferrari, F. A. S., Pinto, S. E. d. S., Baptista, M. S., & Viana, R. L. (2013). Secure information transfer based on computing reservoir. Physics Letters A, 377(10–11), 760–765.

    Article  Google Scholar 

  • Thaler, S. L. (2012). The creativity machine paradigm: Withstanding the argument from consciousness. The American Philosophical Association, Newsletter on Philosophy and Computers, 11(2), 19–30.

    Google Scholar 

  • Thaler, S. L. (2014). Synaptic perturbation and consciousness. International Journal of Machine Consciousness, 6(2), 75–107.

    Article  Google Scholar 

  • Tunstrøm, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., & Couzin, I. D. (2013). Collective states, multistability and transitional behavior in schooling fish. Plos Computational Biology, 9(2). http://icouzin.princeton.edu/wp-content/uploads/2013/11/Tunstr%C3%B8m-2013-PLoS-Computational-Biology.pdf.

  • Turcotte, D. L. (1999). Self-organized criticality. Reports on Progress in Physics, 62(10), 1377–1429.

    Article  Google Scholar 

  • Tuszynski, J. A., Brown, J. A., Crawford, E., Carpenter, E. J., Nip, M. L. A., Dixon, J. M., & Sataric, M. V. (2005). Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Mathematical and Computer Modelling, 41, 1055–1070.

    Article  Google Scholar 

  • Vabo, R., & Nottestad, L. (1997). An individual based model of fish school reactions: Predicting antipredator behaviour as observed in nature. Fisheries Oceanography, 6(3), 155–171.

    Article  Google Scholar 

  • Valente, T. W. (2012). Network interventions. Science, 337(6090), 49–53.

    Article  Google Scholar 

  • Varn, D. P., & Crutchfield, J. P. (2015). Chaotic crystallography: How the physics of information reveals structural order in materials. Current Opinion in Chemical Engineering, 7, 47–56.

    Article  Google Scholar 

  • Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517, 71–140.

    Article  Google Scholar 

  • Viscido, S., Parrish, J., & Grunbaum, D. (2004). Individual behavior and emergent properties of fish schools: A comparison of observation and theory. Marine Ecology Progress Series, 273, 239–249.

    Article  Google Scholar 

  • Vrentas, J. S., & Vrentas, C. M. (2013). Diffusion and mass transfer. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Vygotskij, L. V. (1986). Thought and language – Revised edition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wagg, D. J. (2002). Partial synchronization of nonidentical chaotic systems via adaptive control, with applications to modeling coupled nonlinear systems. International Journal of Bifurcation and Chaos, 12(3), 561–570.

    Article  Google Scholar 

  • Walters, P. (1982). An introduction to ergodic theory. New York, NY: Springer.

    Book  Google Scholar 

  • Wittgenstein, L. (1953). Philosophical investigations. Oxford, UK: Basil Blackwell.

    Google Scholar 

  • Yu, D., & Parlitz, U. (2008). Partial synchronization of chaotic systems with uncertainty. Physical Review E, 77(6), 066208–066217.

    Article  Google Scholar 

  • Zadeh, L. A., Klir, G. J., & Yuan, B. (Eds.). (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A. Zadeh. Singapore, Singapore: World Scientific.

    Google Scholar 

Web Resources (Note: in some Internet sources the date of publication is not indicated)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minati, G., Pessa, E. (2018). From Collective Beings to Quasi-systems. In: From Collective Beings to Quasi-Systems. Contemporary Systems Thinking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7581-5_4

Download citation

Publish with us

Policies and ethics