Skip to main content

The Background of Good Old-Fashioned Systemics

  • Chapter
  • First Online:
  • 316 Accesses

Part of the book series: Contemporary Systems Thinking ((CST))

Abstract

This chapter is devoted to an overview of the basic concepts defining Good Old-Fashioned Systemics (GOFS). The list and comments about such concepts is to be viewed as an introduction to Chap. 2, where we consider new conceptual categories, elaborated upon later when outlining the landscape of a new systemics. The reflections contained within these chapters have been made keeping in mind the current status of the discipline, the advancements, problems and approaches of contemporary science. We also review a partial list of unanswered questions raised by the original von Bertalanffy proposal of a General System Theory. In the last section, dedicated to further remarks, we briefly discuss the concept of matter, which is the basic framework itself of GOFS. This concept will be updated according to the conceptual basis for a new systemics outlined in Chap. 2 and in the rest of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, P. W. (1972). More is different: Broken symmetry and the nature of the hierarchical structure of sciences. Science, 177(4047), 393–396.

    Article  Google Scholar 

  • Ansótegui, C., & Maryà, F. (2005). Mapping problems with finite-domain variables into problems with Boolean variables. In H. H. Hoos & D. G. Mitchell (Eds.), SAT-2004, The seventh international conference on theory and applications of satisfiability testing, Vancouver, Canada, 10th–13th May, 2004 (pp. 1–15). Berlin, Germany: Springer.

    Google Scholar 

  • Aubin, D., & Dalmedico, A. D. (2002). Writing the history of dynamical systems and chaos: Longue durée and revolution, disciplines and cultures. Historia Mathematica, 29, 273–339.

    Article  Google Scholar 

  • Awrejcewicz, J., Andrianov, I. V., & Manevitch, L. I. (2012). Asymptotic approaches in nonlinear dynamics: New trends and applications. New York, NY: Springer.

    Google Scholar 

  • Barrow-Green, J. (1997). Poincaré and the three body problem. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Belintsev, B. N. (1983). Dissipative structures and the problem of biological pattern formation. Soviet Physics Uspekhi, 26, 775–800.

    Article  Google Scholar 

  • Beloussov, L. V. (1998). The dynamic architecture of a developing organism. Dordrecht, Germany: Kluwer.

    Book  Google Scholar 

  • Chang, C. C., & Keisler, H. J. (2012). Model theory (3rd ed.). New York, NY: Dover.

    Google Scholar 

  • Das, J. C. (2010). Transients in electrical systems. Analysis, recognition and mitigation. New York, NY: McGraw-Hill.

    Google Scholar 

  • Davis, H. T. (1962). Introduction to nonlinear differential and integral equations. New York, NY: Dover.

    Google Scholar 

  • De Finetti, B. (1974). Theory of probability (Vol. 1). New York, NY: Wiley.

    Google Scholar 

  • Easterby-Smith, M., Thorpe, R., & Jackson, P. (2012). Management research (4th ed.). London, UK: Sage.

    Google Scholar 

  • Edelman, G., & Tononi, G. (2000). A universe of consciousness. How matter becomes imagination. New York, NY: Basic Books.

    Google Scholar 

  • Feferman, S., Parsons, C., & Simpson, S. (Eds.). (2010). Kurt Gödel: Essays for his centennial. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Fernández, A. (1985). Global instability of a monoparametric family of vector fields representing the unfolding of a dissipative structure. Journal of Mathematical Physics, 26, 2632–2633.

    Article  Google Scholar 

  • Franzén, T. (2005). Gödel’s theorem: An incomplete guide to its use and abuse. Wellesley, MA: AK Peters.

    Book  Google Scholar 

  • Gabisch, G., & Lorenz, H.-W. (1989). Business cycle theory: A survey of methods and concepts. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Gandolfo, G. (2010). Economic dynamics (4th ed.). Berlin, Germany: Springer.

    Google Scholar 

  • Gersenshon, C. (2004). Introduction to random Boolean networks. In M. Bedau, P. Husbands, T. Hutton, S. Kumar, & H. Suzuki (Eds.), Workshop and tutorial proceedings, ninth international conference on the simulation and synthesis of living systems (Alife IX) (pp. 160–173). Boston, MA: MIT Press.

    Google Scholar 

  • Gillies, D. (2000). Philosophical theories of probability. London, UK: Routledge.

    Google Scholar 

  • Glendinning, P. (1994). Stability, instability and chaos: An introduction to the theory of nonlinear differential equations. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Goldenfeld, N., & Woese, C. (2011). Life is physics: Evolution as a collective phenomenon far from equilibrium. Annual Review of Condensed Matter Physics, 2, 375–399.

    Article  Google Scholar 

  • Greenwood, A. (1991). Electrical transients in power systems (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  • Hänle, R. (1994). Automated deduction in multiple-valued logics. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Heisenberg, W. (1971). Physics and beyond. New York, NY: Harper & Row.

    Google Scholar 

  • Jeffrey, R. (2004). Subjective probability: The real thing. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Jensen, P. A., & Bard, J. F. (2003). Operations research models and methods. Hoboken, NJ: Wiley.

    Google Scholar 

  • Kaliszewski, I. (2010). Soft computing for complex multiple criteria decision making. New York, NY: Springer.

    Google Scholar 

  • Kamenev, A. (2011). Field theory of non-equilibrium systems. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Kauffman, A. A. (1993). Origins of order: Self-organization and selection in evolution. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Klages, R., Just, W., & Jarzynski, C. (Eds.). (2013). Nonequilibrium statistical physics of small systems: Fluctuation relations and beyond. Weinheim, Gemany: Wiley.

    Google Scholar 

  • Klir, G. J., & Yuan, B. (Eds.). (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A. Zadeh. Singapore, Singapore: World Scientific.

    Google Scholar 

  • Lai, Y.-C., & Tél, T. (2011). Transient chaos: Complex dynamics on finite-time scales. New York, NY: Springer.

    Book  Google Scholar 

  • Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). New York, NY: Springer.

    Book  Google Scholar 

  • Lorenz, E. (1963). Deterministic non period flow. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  Google Scholar 

  • Marker, D. (2010). Model theory: An introduction. New York, NY: Springer.

    Google Scholar 

  • Mellor, D. H. (2005). Probability: A philosophical introduction. London, UK: Routledge.

    Google Scholar 

  • Minati, G. (2012). Knowledge to manage the knowledge society. The Learning Organization, 19(4), 352–370.

    Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings. New York, NY: Springer.

    Google Scholar 

  • Minati, G., Penna, M. P., & Pessa, E. (1998). Thermodynamic and logical openness in general systems. Systems Research and Behavioural Science, 15(3), 131–145.

    Article  Google Scholar 

  • Murray, J. D. (2007). Mathematical biology: I. An introduction (3rd ed.). Berlin, Germany: Springer.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. New York, NY: Wiley.

    Google Scholar 

  • Nitzan, A., & Ortoleva, P. (1980). Scaling and Ginzburg criteria for critical bifurcations in nonequilibrium reacting systems. Physical Review A, 21, 1735–1755.

    Article  Google Scholar 

  • Nolte, D. D. (2010). The tangled tale of phase space. Physics Today, 63(4), 33–38.

    Article  Google Scholar 

  • Palmer, J. (2010). Parmenides and presocratic philosophy. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Parisi, G. (1992). Field theory, disorder and simulations. Singapore, Singapore: World Scientific.

    Book  Google Scholar 

  • Pastor, J. (2008). Mathematical ecology of populations and ecosystems. Chichester, UK: Wiley.

    Google Scholar 

  • Raatikainen, P. (2005). On the philosophical relevance of Gödel’s incompleteness theorems. Revue Internationale de Philosophie, 59, 513–534.

    Google Scholar 

  • Schöll, E. (1986). Influence of boundaries on dissipative structures in the Schlögl model. Zeitschrift für Physik B –Condensed Matter, 62, 245–253.

    Article  Google Scholar 

  • Scott, A. (2003). Nonlinear science: Emergence and dynamics of coherent structures. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Sewell, G. (2002). Quantum mechanics and its emergent macrophysics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Silagadze, Z. K. (2005). Zeno meets modern science. Acta Physica Polonica B, 36, 2887–2930.

    Google Scholar 

  • Stefanucci, G., & Van Leeuwen, R. (2013). Nonequilibrium many-body theory of quantum systems: A modern introduction. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Stein, D. L. (1980). Dissipative structures, broken symmetry, and the theory of equilibrium phase transitions. Journal of Chemical Physics, 72, 2869–2874.

    Article  Google Scholar 

  • Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.

    Article  Google Scholar 

  • Tettamanzi, A., & Tomassini, M. (2010). Soft computing: Integrating evolutionary, neural, and fuzzy systems. Berlin, Germany: Springer.

    Google Scholar 

  • Turing, A. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematics Society, (Series 2, Vol. 42, pp. 230–265). Corrections in (Series 2, 43, pp 544–546).

    Google Scholar 

  • Vick, S. G. (2002). Degrees of belief: Subjective probability and engineering judgment. Reston, VA: American Society of Civil Engineers Press.

    Google Scholar 

  • Volterra, V. (1926). Variations and fluctuations of the number of individuals in animal species living together. In R. N. Chapman (Ed.), Animal ecology (pp. 409–448). New York, NY: McGraw-Hill.

    Google Scholar 

  • Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111, 23–29.

    Article  Google Scholar 

  • Von Bertalanffy, L. (1968). General system theory: Foundations, development, applications. New York, NY: George Braziller.

    Google Scholar 

  • Von Foerster, H. (1984). Observing systems. Seaside, CA: Intersystems Publications.

    Google Scholar 

  • Von Glasersfeld, E. (1991). Knowing without metaphysics. Aspects of the radical constructivist position. In F. Steier (Ed.), Research and reflexivity (pp. 12–29). London, UK/Newbury Park, CA: Sage.

    Google Scholar 

  • Von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. London, UK: Falmer Press.

    Book  Google Scholar 

  • Wilson, E. O. (1975). Sociobiology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37, 77–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minati, G., Pessa, E. (2018). The Background of Good Old-Fashioned Systemics. In: From Collective Beings to Quasi-Systems. Contemporary Systems Thinking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7581-5_1

Download citation

Publish with us

Policies and ethics