Skip to main content

Microbial Resistance to Antimicrobials

  • Chapter
  • First Online:
Microbial Control and Food Preservation

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

  • 2221 Accesses

Abstract

Recently, there has been a growing concern across the globe that humans are approaching the end of the antibiotic era. However, this is not a new idea; concern about antibiotic resistance has been around for many years. As more and more microorganisms become resistant to antibiotics, there are fewer and fewer options to treat infections. To develop control measures for microbial antibiotic resistance, the scientific community must have information about the extent of the problem, the mechanism of antibiotic resistance, and how resistance spreads. A potential contributor to the problem is development of antibiotic resistance through exposure to food-related antimicrobials and sanitizers. A focus of the chapter is a discussion of the research on the role of application of antimicrobial food preservatives and environmental sanitizers in the food industry on development of resistance to medically-important antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aarestrup FM, Seyfarth AM, Emborg H-D, Pedersen K, Hendriksen RS, Bager F (2001) Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054–2059

    Article  CAS  Google Scholar 

  • Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Rev Infect Dis 10:677–678

    Google Scholar 

  • Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK (1997) Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol 4:490–497

    Article  CAS  Google Scholar 

  • Alekshun MN, Levy SB (1997) Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41:2067–2075

    CAS  Google Scholar 

  • Alonso-Hernando A, Capita R, Prieto M, Alonso-Calleja C (2009) Comparison of antibiotic resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and exposed to poultry decontaminants. Food Control 20:1108–1111

    Article  CAS  Google Scholar 

  • Anand N (1975) Sulfonamides and sulfones. In: Corcoran J, Hahn F, Snell JF, Arora KL (eds) Mechanism of action of antimicrobial and antitumor agents. Springer, Berlin, Heidelberg

    Google Scholar 

  • Apolonio J, Faleiro ML, Miguel MG, Neto L (2014) No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral. FEMS Microbiol Lett 354(2):92–101

    Article  CAS  Google Scholar 

  • Bancroft EA (2007) Antimicrobial resistance: it’s not just for hospitals. JAMA 298:1803–1804

    Article  Google Scholar 

  • Barna JCJ, Williams DH, Stone DJM, Leung TWC, Doddrell DM (1984) Structure elucidation of the teicoplanin antibiotics. J Am Chem Soc 106:4895–4902

    Article  CAS  Google Scholar 

  • Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E, Cloeckaert A (2004) AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104. Antimicrob Agents Chemother 48:3729–3735

    Article  CAS  Google Scholar 

  • Beier RC, Poole TL, Brichta-Harhay DM, Anderson RC, Bischoff KM, Hernandez CA, Bono JL, Arthur TM, Nagaraja TG, Crippen TL, Sheffield CL, Nisbet DJ (2013) Disinfectant and antibiotic susceptibility profiles of Escherichia coli O157:H7 strains from cattle carcasses, feces, and hides and ground beef from the United States. J Food Prot 76:6–17

    Article  CAS  Google Scholar 

  • Bennett PM (2004) Genome plasticity. In: Woodford N, Johnson AP (eds) Genomics, proteomics, and clinical bacteriology. Humana Press, Totowa, NJ

    Google Scholar 

  • Bentley R (2009) Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence β-lactams). J Indust Microbiol Biotech 36:775–786

    Article  CAS  Google Scholar 

  • Binda E, Marinelli F, Marcone G (2014) Old and new glycopeptide antibiotics: action and resistance. Antibiotics 3:572

    Article  CAS  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58

    Article  CAS  Google Scholar 

  • Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42:73–78

    Article  CAS  Google Scholar 

  • Brodersen DE, Clemons Jr WM, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–1154

    Article  CAS  Google Scholar 

  • Bycroft B, Shute R (1985) The molecular basis for the mode of action of beta-lactam antibiotics and mechanisms of resistance. Pharm Res 2:3–14

    Article  CAS  Google Scholar 

  • Capita R, Riesco-Pelaez F, Alonso-Hernando A, Alonso-Calleja C (2014) Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl Environ Microbiol 80:1268–1280

    Article  CAS  Google Scholar 

  • Cardenas A, Palzkill T (2014) Beta-lactam resistance. In: Nelson KE (ed) Encyclopedia of metagenomics. Springer, New York

    Google Scholar 

  • Chapman J, Diehl M, Fearnside K (1998) Preservative tolerance and resistance. Int J Cosmet Sci 20:31–39

    Article  CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  CAS  Google Scholar 

  • Chopra I, Hawkey PM, Hinton M (1992) Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 29:245–277

    Article  CAS  Google Scholar 

  • Christensen EG, Gram L, Kastbjerg VG (2011) Sublethal triclosan exposure decreases susceptibility to gentamicin and other aminoglycosides in Listeria monocytogenes. Antimicrob Agents Chemother 55:4064–4071

    Article  CAS  Google Scholar 

  • Cole EC, Addison RM, Rubino JR, Leese KE, Dulaney PD, Newell MS, Wilkins J, Gaber DJ, Wineinger T, Criger DA (2003) Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol 95:664–676

    Article  CAS  Google Scholar 

  • Condell O, Iversen C, Cooney S, Power KA, Walsh C, Burgess C, Fanning S (2012) Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol 78:3087–3097

    Article  CAS  Google Scholar 

  • Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681

    Article  CAS  Google Scholar 

  • Conover LH, Moreland WT, English AR, Stephens CR, Pilgrim FJ (1953) Terramycin. XI. Tetracycline. J Am Chem Soc 75:4622–4623

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Cvitkovitch DG, Li Y-H, Ellen RP (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632

    Article  CAS  Google Scholar 

  • Dancer SJ (2001) The problem with cephalosporins. J Antimicrob Chemother 48:463–478

    Article  CAS  Google Scholar 

  • Davidson PM, Harrison MA (2002) Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol 56:69–78

    Google Scholar 

  • Davidson P, Bozkurt Cekmer H, Monu E, Techathuvanan C (2015) Natural antimicrobials in food – an overview. In: Taylor MT (ed) Handbook of natural antimicrobials for food safety and quality. Woodhead Publishing, Cambridge

    Google Scholar 

  • Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341–350

    CAS  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  CAS  Google Scholar 

  • Doern CD, Roberts AL, Hong W, Nelson J, Lukomski S, Swords WE, Reid SD (2009) Biofilm formation by group A Streptococcus: a role for the streptococcal regulator of virulence (Srv) and streptococcal cysteine protease (SpeB). Microbiology 155:46–52

    Article  CAS  Google Scholar 

  • Drlica K (1999) Mechanism of fluoroquinolone action. Curr Opin Microbiol 2:504–508

    Article  CAS  Google Scholar 

  • Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51:177–181

    Article  CAS  Google Scholar 

  • Egorova S, Timinouni M, Demartin M, Granier SA, Whichard JM, Sangal V, Fabre L, Delauné A, Pardos M, Millemann Y, Espié E, Achtman M, Grimont PAD, Weill Fç X (2008) Ceftriaxone-resistant Salmonella enterica serotype Newport, France. Emerg Infect Dis 14:954–957

    Article  CAS  Google Scholar 

  • Emmerson AM, Jones AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51(Suppl 1):13–20

    Article  CAS  Google Scholar 

  • Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I (2001) Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis 7:24–34

    Article  CAS  Google Scholar 

  • Everett MJ, Jin YF, Ricci V, Piddock LJ (1996) Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob Agents Chemother 40:2380–2386

    CAS  Google Scholar 

  • Fadli M, Chevalier J, Hassani L, Mezrioui NE, Pages JM (2014) Natural extracts stimulate membrane-associated mechanisms of resistance in Gram-negative bacteria. Lett Appl Microbiol 58:472–477

    Article  CAS  Google Scholar 

  • Fernández-Fuentes MA, Ortega Morente E, Abriouel H, Pérez Pulido R, Gálvez A (2012) Isolation and identification of bacteria from organic foods: sensitivity to biocides and antibiotics. Food Control 26:73–78

    Article  CAS  Google Scholar 

  • Finlay AC, Hobby GL et al (1950) Terramycin, a new antibiotic. Science 111:85

    Article  CAS  Google Scholar 

  • Fishman N (2006) Antimicrobial stewardship. Am J Med 119:S53–S61

    Article  Google Scholar 

  • Fitzgerald AC, Edrington TS, Looper ML, Callaway TR, Genovese KJ, Bischoff KM, Mcreynolds JL, Thomas JD, Anderson RC, Nisbet DJ (2003) Antimicrobial susceptibility and factors affecting the shedding of Escherichia coli O157:H7 and Salmonella in dairy cattle. Lett Appl Microbiol 37:392–398

    Article  CAS  Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull World Health Organ 10:226–236

    CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  Google Scholar 

  • González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316

    Article  CAS  Google Scholar 

  • Goss WA, Deitz WH, Cook TM (1964) Mechanism of action of nalidixic acid on Escherichia coli. J Bacteriol 88:1112–1118

    CAS  Google Scholar 

  • Hadorn K, Hachler H, Schaffner A, Kayser FH (1993) Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur J Clin Microbiol Infect Dis 12:928–937

    Article  CAS  Google Scholar 

  • Hahn W, Morley CP, Morrow C, Epling JW (2009) The effect of media attention on concern for and medical management of methicillin-resistant Staphylococcus aureus: a multimethod study. J Public Health Manag Pract 15:150–159

    Article  Google Scholar 

  • Hall RM, Collis CM (1998) Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat 1:109–119

    Article  CAS  Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104

    Article  CAS  Google Scholar 

  • Han J, David DE, Deck J, Lynne AM, Kaldhone P, Nayak R, Stefanova R, Foley SL (2011) Comparison of Salmonella enterica Serovar Heidelberg isolates from human patients with those from animal and food sources. J Clin Microbiol 49:1130–1133

    Article  Google Scholar 

  • Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516

    CAS  Google Scholar 

  • Hassett DJ, Ma JF, Elkins JG, Mcdermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093

    Article  CAS  Google Scholar 

  • Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51:29–35

    Article  CAS  Google Scholar 

  • Hellinger WC, Brewer NS (1999) Carbapenems and monobactams: imipenem, meropenem, and aztreonam. Mayo Clin Proc 74:420–434

    Article  CAS  Google Scholar 

  • Henry RJ (1943) The mode of action of sulfonamides. Bacteriol Rev 7:175–262

    CAS  Google Scholar 

  • Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S (1986) Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 29:535–538

    Article  CAS  Google Scholar 

  • Hooper DC, Wolfson JS (1988) Mode of action of the quinolone antimicrobial agents. Rev Infect Dis 10:S14–S21

    Article  CAS  Google Scholar 

  • Hooper DC, Wolfson JS (1991) Mode of action of the new quinolones: new data. Euro J Clin Microbiol Infect Dis 10:223–231

    Article  CAS  Google Scholar 

  • Huovinen P, Sundström L, Swedberg G, Sköld O (1995) Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 39:279–289

    Article  CAS  Google Scholar 

  • Jacoby GA (2005) Mechanisms of resistance to quinolones. Clin Infect Dis 41:S120–S126

    Article  CAS  Google Scholar 

  • Jana S, Deb JK (2006) Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 70:140–150

    Article  CAS  Google Scholar 

  • Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18

    Article  CAS  Google Scholar 

  • Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396

    Article  CAS  Google Scholar 

  • Karatzas KA, Webber MA, Jorgensen F, Woodward MJ, Piddock LJ, Humphrey TJ (2007) Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 60:947–955

    Article  CAS  Google Scholar 

  • Klevens R, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  CAS  Google Scholar 

  • Lavilla Lerma L, Benomar N, Gálvez A, Abriouel H (2013) Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. Int J Food Microbiol 161:97–106

    Article  CAS  Google Scholar 

  • Ledder RG, Gilbert P, Willis C, Mcbain AJ (2006) Effects of chronic triclosan exposure upon the antimicrobial susceptibility of 40 ex-situ environmental and human isolates. J Appl Microbiol 100:1132–1140

    Article  CAS  Google Scholar 

  • Lehr D (1957) Clinical toxicity of sulfonamides. Ann N Y Acad Sci 69:417–447

    Article  CAS  Google Scholar 

  • Li W, Atkinson GC, Thakor NS, Allas Ü, Lu C-C, Chan K-Y, Tenson T, Schulten K, Wilson KS, Hauryliuk V, Frank J (2013) Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat Commun 4:1477

    Article  CAS  Google Scholar 

  • Lietman PS (1990) Aminoglycosides and spectinomucin: aminocyclitols. In: Mendell GL, Douglas GR, Bennett JE (eds) Principles and practice of infectious diseases, 3rd edn. Churchill Livingstone, New York, NY

    Google Scholar 

  • Lin J, Michel LO, Zhang Q (2002) CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46:2124–2131

    Article  CAS  Google Scholar 

  • Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71:4250–4259

    Article  CAS  Google Scholar 

  • Lipsky BA, Baker CA (1999) Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin Infect Dis 28:352–361

    Article  CAS  Google Scholar 

  • Lu Y, Zhao H, sun J, Liu Y, Zhou X, Beier RC, Wu G, Hou X (2014) Characterization of multidrug-resistant Salmonella enterica Serovars Indiana and Enteritidis from chickens in Eastern China. PLoS One 9:e96050

    Article  CAS  Google Scholar 

  • Mao JCH, Wiegand RG (1968) Mode of action of macrolides. Biochim Biophys Acta Nucl Acids Protein Synth 157:404–413

    Article  CAS  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  CAS  Google Scholar 

  • Maseda H, Hashida Y, Konaka R, Shirai A, Kourai H (2009) Mutational upregulation of a resistance-nodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetylpyridinium chloride, and antibiotic resistance in Serratia marcescens. Antimicrob Agents Chemother 53:5230–5235

    Article  CAS  Google Scholar 

  • Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327

    Article  CAS  Google Scholar 

  • Mazzei T, Mini E, Novelli A, Periti P (1993) Chemistry and mode of action of macrolides. J Antimicrob Chemother 31(Suppl C):1–9

    Article  CAS  Google Scholar 

  • Mcmurry LM, Oethinger M, Levy SB (1998) Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett 166:305–309

    Article  CAS  Google Scholar 

  • Mellor JA, Kingdom J, Cafferkey M, Keane CT (1985) Vancomycin toxicity: a prospective study. J Antimicrob Chemother 15:773–780

    Article  CAS  Google Scholar 

  • Moken MC, Mcmurry LM, Levy SB (1997) Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41:2770–2772

    CAS  Google Scholar 

  • Molina-González D, Alonso-Calleja C, Alonso-Hernando A, Capita R (2014) Effect of sub-lethal concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains. Food Control 40:329–334

    Article  CAS  Google Scholar 

  • Nakajima Y (1999) Mechanisms of bacterial resistance to macrolide antibiotics. J Infect Chemother 5:61–74

    Article  CAS  Google Scholar 

  • Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32

    Article  CAS  Google Scholar 

  • Neu HC (1990) Third generation cephalosporins: safety profiles after 10 years of clinical use. J Clin Pharmacol 30:396–403

    Article  CAS  Google Scholar 

  • Nikaido H (1998) Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1:516–523

    Article  CAS  Google Scholar 

  • Noguchi N, Takada K, Katayama J, Emura A, Sasatsu M (2000) Regulation of transcription of the mph(A) gene for Macrolide 2′-Phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A). J Bacteriol 182:5052–5058

    Article  CAS  Google Scholar 

  • Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178:306–308

    Article  CAS  Google Scholar 

  • Pan Y, Breidt F, Kathariou S (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72:7711–7717

    Article  CAS  Google Scholar 

  • Paphitou NI (2013) Antimicrobial resistance: action to combat the rising microbial challenges. Intl J Antimicrob Agents 42(Suppl. 1):S25–S28

    Article  CAS  Google Scholar 

  • Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960

    Article  CAS  Google Scholar 

  • Periti P, Mazzei T, Mini E, Novelli A (1993) Adverse effects of macrolide antibacterials. Drug Saf 9:346–364

    Article  CAS  Google Scholar 

  • Pootoolal J, Neu J, Wright GD (2002) Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol 42:381–408

    Article  CAS  Google Scholar 

  • Potenski CJ, Gandhi M, Matthews KR (2003) Exposure of Salmonella Enteritidis to chlorine or food preservatives increases susceptibility to antibiotics. FEMS Microbiol Lett 220:181–186

    Article  CAS  Google Scholar 

  • Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P (1990) Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. Lancet 335:1422–1426

    Article  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  CAS  Google Scholar 

  • Rakic-Martinez M, Drevets DA, Dutta V, Katic V, Kathariou S (2011) Listeria monocytogenes strains selected on ciprofloxacin or the disinfectant benzalkonium chloride exhibit reduced susceptibility to ciprofloxacin, gentamicin, benzalkonium chloride, and other toxic compounds. Appl Environ Microbiol 77:8714–8721

    Article  CAS  Google Scholar 

  • Redgrave LS, Sutton SB, Webber MA, Piddock LJ (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438–445

    Article  CAS  Google Scholar 

  • Reece RJ, Maxwell A, Wang JC (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26:335–375

    Article  CAS  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Euro J Clin Microbiol Infect Dis 8:943–950

    Article  CAS  Google Scholar 

  • Romanova NA, Wolffs PF, Brovko LY, Griffiths MW (2006) Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 72:3498–3503

    Article  CAS  Google Scholar 

  • Rowe B, Ward LR, Threlfall EJ (1997) Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis 24(Suppl 1):S106–S109

    Article  Google Scholar 

  • Russell AD (1997) Plasmids and bacterial resistance to biocides. J Appl Microbiol 83:155–165

    Article  CAS  Google Scholar 

  • Russell AD, Tattawasart U, Maillard JY, Furr JR (1998) Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob Agents Chemother 42:2151

    CAS  Google Scholar 

  • Sanchez P, Moreno E, Martinez JL (2005) The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 49:781–782

    Article  CAS  Google Scholar 

  • Saxon A, Beall GN, Rohr AS, Adelman DC (1987) Immediate hypersensitivity reactions to beta-lactam antibiotics. Ann Intern Med 107:204–215

    Article  CAS  Google Scholar 

  • Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 165:359–369

    Article  CAS  Google Scholar 

  • Schwaiger K, Harms KS, Bischoff M, Preikschat P, Molle G, Bauer-Unkauf I, Lindorfer S, Thalhammer S, Bauer J, Holzel CS (2014) Insusceptibility to disinfectants in bacteria from animals, food and humans: is there a link to antimicrobial resistance? Front Microbiol 5:88

    Article  Google Scholar 

  • Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7

    Article  CAS  Google Scholar 

  • Seydel JK (1968) Sulfonamides, structure-activity relationship, and mode of action. Structural problems of the antibacterial action of 4-aminobenzoic acid (PABA) antagonists. J Pharm Sci 57:1455–1478

    Article  CAS  Google Scholar 

  • Seydel JK (1981) Mode of action and quantitative structure–activity relationship of sulfonamides in biological systems of different complexity (enzymes, bacteria, rat, and human). Intl J Quantum Chem 20:131–150

    Article  CAS  Google Scholar 

  • Sheridan À, Lenahan M, Duffy G, Fanning S, Burgess C (2012) The potential for biocide tolerance in Escherichia coli and its impact on the response to food processing stresses. Food Control 26:98–106

    Article  CAS  Google Scholar 

  • Singer RS, Finch R, Wegener HC, Bywater R, Walters J, lipsitch M (2003) Antibiotic resistance—the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 3:47–51

    Article  Google Scholar 

  • Sköld O (2000) Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3:155–160

    Article  Google Scholar 

  • Spinks CA, Wyatt GM, Lee HA, Morgan MRA (1999) Molecular modeling of hapten structure and relevance to broad specificity immunoassay of sulfonamide antibiotics. Bioconjug Chem 10:583–588

    Article  CAS  Google Scholar 

  • Sreedharan S, Oram M, Jensen B, Peterson LR, Fisher LM (1990) DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Escherichia coli. J Bacteriol 172:7260–7262

    Article  CAS  Google Scholar 

  • Stahlmann R, Lode H (1999) Toxicity of quinolones. Drugs 58:37–42

    Article  CAS  Google Scholar 

  • Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 45:502–531

    Article  CAS  Google Scholar 

  • Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z, Ochsner UA, Hassett DJ (2000) Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 66:836–838

    Article  CAS  Google Scholar 

  • Stohs SJ, Miller MJS (2014) A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food Chem Toxicol 63:240–243

    Article  CAS  Google Scholar 

  • Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267

    Article  CAS  Google Scholar 

  • Syrogiannopoulos GA, Grivea IN, Tait-Kamradt A, Katopodis GD, Beratis NG, Sutcliffe J, Appelbaum PC, Davies TA (2001) Identification of an erm(A) erythromycin resistance methylase gene in Streptococcus pneumoniae isolated in Greece. Antimicrob Agents Chemother 45:342–344

    Article  CAS  Google Scholar 

  • Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, Mcdermott PF (2012) Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis 18:741–749

    Article  CAS  Google Scholar 

  • Tenover FC, Hughes JM (1995) WHO Scientific Working Group on monitoring and management of bacterial resistance to antimicrobial agents. Emerg Infect Dis 1:37

    Article  CAS  Google Scholar 

  • Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330:1005–1014

    Article  CAS  Google Scholar 

  • Thomas L, Maillard JY, Lambert RJ, Russell AD (2000) Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect 46:297–303

    Article  CAS  Google Scholar 

  • Thomas L, Russell AD, Maillard JY (2005) Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J Appl Microbiol 98:533–543

    Article  CAS  Google Scholar 

  • Thompson J, Skeggs P, Cundliffe E (1985) Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet 201:168–173

    Article  CAS  Google Scholar 

  • Touchet S, Carreaux F, Carboni B, Bouillon A, Boucher J-L (2011) Aminoboronic acids and esters: from synthetic challenges to the discovery of unique classes of enzyme inhibitors. Chem Soc Rev 40:3895–3914

    Article  CAS  Google Scholar 

  • Vashist J, Vishvanath KR, Kapil A, Yennamalli R, Subbarao N, Rajeswari MR (2009) Interaction of nalidixic acid and ciprofloxacin with wild type and mutated quinolone-resistance-determining region of DNA gyrase A. Indian J Biochem Biophys 46:147–153

    CAS  Google Scholar 

  • Waxman A, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 52:825–869

    Article  CAS  Google Scholar 

  • Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11

    Article  CAS  Google Scholar 

  • Welsch TT, Gillock ET (2011) Triclosan-resistant bacteria isolated from feedlot and residential soils. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:436–440

    Article  CAS  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance. Available at: http://www.who.int/drugresistance/documents/surveillancereport/en/

    Google Scholar 

  • Williams JD (2001) Evaluation of the safety of macrolides. Int J Antimicrob Agents 18(Suppl 1):77–81

    Article  Google Scholar 

  • Wright GD (2011) Molecular mechanisms of antibiotic resistance. Chem Commun 47:4055–4061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Michael Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pendleton, S., Davidson, P.M. (2017). Microbial Resistance to Antimicrobials. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_9

Download citation

Publish with us

Policies and ethics