Skip to main content

Antimicrobial Peptides and Polyphenols: Implications in Food Safety and Preservation

  • Chapter
  • First Online:
Microbial Control and Food Preservation

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

The concept of minimally processed and natural foods is gaining popularity among the different group of consumers, and the globalization of food markets, unique new manufacturing processes, and demand for nutritional food without preservatives has enforced research for natural antimicrobials. Food outbreaks caused by Listeria monocytogenes, Escherichia coli O157 and eradication of Bacillus and Clostridium spores have emerged as major challenges faced by the modern food industry. The antimicrobial compounds have a broad range of biologically active molecules of multiple applications. These molecules could be of multiple origins, and mainly consist of carbohydrates, proteins (cationic or anionic), lipids, essential oils or secondary metabolites (saponins, flavonoid, thymols, linalool, citral, tanins, eugenols, terpene, polyphenols, phytophenols, phenolic acids etc.). Many of the naturally occurring antimicrobials are commercialized however; the efficacy, consumer acceptance, and regulation are still a matter of extensive research. In the present chapter, identification, characterization, the mechanism of action of selected natural antimicrobial peptides and polyphenols and their potential applications in food safety and preservation have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abler LA, Klapes NA, Sheldon BW, Klaenhammer TR (1995) Inactivation of food-borne pathogens with magainin peptides. J Food Prot 58:381–388

    Article  CAS  Google Scholar 

  • Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  CAS  Google Scholar 

  • Agourram A, Ghirardello D, Rantsiou K, Zeppa G, Belviso S, Romane A, Oufdou K, Giordano M (2013) Phenolic content, antioxidant potential and antimicrobial activities of fruit and vegetable by-product extracts. Int J Food Prop 16(5):1092–1104

    Article  CAS  Google Scholar 

  • Ahn HS, Cho W, Kim JM, Joshi BP, Park JW, Lohani CR, Cho H, Lee KH (2008) Design and synthesis of cyclic disulfide-bonded antibacterial peptides on the basis of the alpha helical domain of Tenecin 1, an insect defensin. Bioorg Med Chem 16(7):4127–4137

    Article  CAS  Google Scholar 

  • Akhtar S, Ismail T, Fraternale D, Sestili P (2015) Pomegranate peel and peel extracts: Chemistry and food features. Food Chem 174:417–425

    Article  CAS  Google Scholar 

  • Aloui H, Khwaldia K (2016) Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Saf 15:1080–1103

    Article  CAS  Google Scholar 

  • Al-Zoreky N (2009) Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol 134(3):244–248

    Article  CAS  Google Scholar 

  • Andrä J, Jakovkin I, Grötzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, Gutsmann T, Leippe M (2008) Structure and mode of action of the antimicrobial peptide arenicin. Biochem J 410:113–122

    Article  CAS  Google Scholar 

  • Appendini P, Hotchkiss JH (2001) Surface modification of poly(styrene) by the attachment of an antimicrobial peptide. J Appl Polym Sci 81(3):609–616

    Article  CAS  Google Scholar 

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. IFSET 3(2):113–126

    CAS  Google Scholar 

  • Arora DS, Kaur J (1999) Antimicrobial activity of spices. Int J Antimicrob Agents 12(3):257–262

    Article  CAS  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575

    Article  CAS  Google Scholar 

  • Batovska D, Parushev S, Stamboliyska B, Tsvetkova I, Ninova M, Najdenski H (2009) Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur J Med Chem 44:2211–2218

    Article  CAS  Google Scholar 

  • Boge L, Bysell H, Ringstad L, Wennman D, Umerska A, Cassisa V, Eriksson J, Joly-Guillou ML, Edwards K, Andersson M (2016) Lipid-based liquid crystals as carriers for antimicrobial peptides: Phase behavior and antimicrobial effect. Langmuir 32:4217–4228

    Article  CAS  Google Scholar 

  • Borges A, Ferreira C, Saavedra MJ, Simões M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19(4):256–265

    Article  CAS  Google Scholar 

  • Brahmachary M, Krishnan SP, Koh JL, Khan AM, Seah SH, Tan TW, Brusic V, Bajic VB (2004) ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res 32:D586–D589

    Article  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  • Bryan FL (1982) Diseases transmitted by foods. In-The United States Centers for Disease Control, classification and summary, 2nd edn. U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, Center for Professional Development and Training, Atlanta

    Google Scholar 

  • Buzzini P, Arapitsas P, Goretti M, Branda E, Turchetti B, Pinelli P, Ieri F, Romani A (2008) Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem 8:1179–1187

    Article  CAS  Google Scholar 

  • Cetin-Karaca H, Newman MC (2015) Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia coli. Food Biosci 11:8–15

    Article  CAS  Google Scholar 

  • Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide induced pore formation. Biophys J 84:3751–3758

    Article  CAS  Google Scholar 

  • Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336(2):171–179

    Article  CAS  Google Scholar 

  • Cheng C, Arritt F, Stevenson C (2015) Controlling Listeria monocytogenes in cold smoked salmon with the antimicrobial peptide salmine. J Food Sci 80(6):M314–M318

    Article  CAS  Google Scholar 

  • Clark DP, Durell S, Maloy WL, Zasloff M (1994) Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem 269:10849–10855

    CAS  Google Scholar 

  • Cole A, Darouiche R, Legarda D, Connell N, Diamond G (2000) Characterization of a fish antimicrobial peptide: gene expression, subcellular localization and spectrum of activity. Antimicrob Agents Chemother 44:2039–2045

    Article  CAS  Google Scholar 

  • Conlon JM, Ahmed E, Coquet L, Jouenne T, Leprince J, Vaudry H, King JD (2009a) Peptides with potent cytolytic activity from the skin secretions of the North American leopard frogs, Lithobates blairi and Lithobates yavapaiensis. Toxicon 53:699–605

    Article  CAS  Google Scholar 

  • Conlon JM, Ahmed E, Pal T, Sonnevend A (2010) Potent and rapid bactericidal action of alyteserin-1c and its [E4K] analog against multidrug-resistant strains of Acinetobacter baumannii. Peptides 31(10):1806

    Article  CAS  Google Scholar 

  • Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H, Woodhams DC (2009b) The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides 30:1069–1073

    Article  CAS  Google Scholar 

  • Conlon JM, Raza H, Coquet L, Jouenne T, Leprince J, Vaudry H, King JD (2009c) Purification of peptides with differential cytolytic activities from the skin secretions of the Central American frog, Lithobates vaillanti (Ranidae). Comp Biochem Physiol C Toxicol Pharmacol 150:150

    Article  CAS  Google Scholar 

  • Conlon JM, Sonnevend A, Davidson C, Smith DD, Nielsen PF (2004) The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochem Biophys Res Commun 320:170–175

    Article  CAS  Google Scholar 

  • Côté J, Caillet S, Doyon G, Sylvain JF, Lacroix M (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50:666–679

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  Google Scholar 

  • Csordás A, Michl H (1970) Isolation and structure of an hemolytic polypeptide from the defensive secretion of european bombina species. Monat Chem 101:182

    Article  Google Scholar 

  • Cueva C, Moreno-Arribas MV, Martín-Álvarez PJ, Bills G, Vicente MF, Basilio A, López Rivas C, Requena T, Rodríguez JM, Bartolomé B (2010) Anti- microbial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol 161:372–382

    Article  CAS  Google Scholar 

  • Cushnie TPT, Hamilton VES, Chapman DG, Taylor PW, Lamb AJ (2007) Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J Appl Microbiol 103:1562–1567

    Article  CAS  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

    Article  CAS  Google Scholar 

  • Debnath S, Rahman SH, Deshmukh G, Duganath N, Pranitha C, Chiranjeevi A (2011) Antimicrobial screening of various fruit seed extracts. Pharm J 3(19):83–86

    Google Scholar 

  • Dimkić I, Ristivojević P, Janakiev T, Berić T, Trifković J, Milojković-Opsenica D, Stanković S (2016) Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Ind Crop Prod 94:856–871

    Article  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins-a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  Google Scholar 

  • Dorman H, Deans S (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88(2):308–316

    Article  CAS  Google Scholar 

  • Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB (2015) Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS One 10(12):e0144611. https://doi.org/10.1371/journal.pone.0144611

    Article  CAS  Google Scholar 

  • Engels C, Knödler M, Zhao YY, Carle R, Gänzle MG, Schieber A (2009) Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. J Agric Food Chem 57(17):7712–7718

    Article  CAS  Google Scholar 

  • Engels C, Schieber A, Gänzle MG (2011) Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.) Appl Environ Microbiol 77:2215–2223

    Article  CAS  Google Scholar 

  • Engels C, Schieber A, Gänzle MG (2012) Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. Eur Food Res Technol 234:535–542

    Article  CAS  Google Scholar 

  • Fattouch S, Caboni P, Coroneo V, Tuberoso CI, Angioni A, Dessi S, Marzouki N, Cabras P (2007) Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55(3):963–969

    Article  CAS  Google Scholar 

  • Figueiredo AR, Campos F, de Freitas V, Hogg T, Couto JA (2008) Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiol 25(1):105–112

    Article  CAS  Google Scholar 

  • Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N (2006) Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Prot 69:354–361

    Article  CAS  Google Scholar 

  • Funatogawa K, Hayashi S, Shimomura H, Yoshida T, Hatano T, Ito H, Hirai Y (2004) Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol Immunol 48:251–261

    Article  CAS  Google Scholar 

  • Galinier R, Roger E, Sautiere PE, Aumelas A, Banaigs B, Mitta G (2009) Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J Pept Sci 15:48–55

    Article  CAS  Google Scholar 

  • Gazil E, Miller IR, Biggin PC, Sansom MS, Shai Y (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870

    Article  Google Scholar 

  • Gennaro R, Skerlavaj B, Romeo D (1989) Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 57(10):31423–31426

    Google Scholar 

  • Goumon Y, Lugardon K, Kieffer B, Lefèvre JF, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1998) Characterization of antibacterial COOH-terminal proenkephalin-A-derived Peptides (PEAP) in infectious fluids: importance of enkelytin, the antibacterial PEAP secreted by stimulated chromaffin cells. J Biol Chem 273:29847–29856

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Ramos L, Moreno C, Zúñiga-Paredes JC, Carlosama-Yepez M, Ruales P (2016) Antimicrobial activity of plant-food by-products: a review focusing on the tropics. Livest Sci 189:32–39

    Article  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Habermann E, Jentsch J (1967) Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstucken. Hoppe Seylers Z Physiol Chem 348:37–50

    Article  CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86(6):985–990

    Article  CAS  Google Scholar 

  • Hansen LT, Austin JW, Gill TA (2001) Antibacterial effect of protamine in combination with EDTA and refrigeration. Int J Food Microbiol 66:149–161

    Article  CAS  Google Scholar 

  • Hansen LT, Gill TA (2000) Solubility and antimicrobial efficacy of protamine on Listeria monocytogenes and Escherichia coli as influenced by pH. J Appl Microbiol 88:1049–1055

    Article  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713

    Article  CAS  Google Scholar 

  • Hayrapetyan H, Hazeleger WC, Beumer RR (2012) Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat pate at different temperatures. Food Control 23(1):66–72

    Article  Google Scholar 

  • Heinonen M (2007) Antioxidant activity and antimicrobial effect of berry phenolics-a finnish perspective. Mol Nutr Food Res 51:684–691

    Article  CAS  Google Scholar 

  • Hiemstra PS, van den Barselaar MT, Roest M, Nibbering PH, van Furth R (1999) Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol 66:423–428

    Article  CAS  Google Scholar 

  • Hirasawa M, Takada K (2004) Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J Antimicrob Chemother 53:225–229

    Article  CAS  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39:8347–8352

    Article  CAS  Google Scholar 

  • Hussain T, Gupta S, Adhami VM, Mukhtar H (2005) Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. Int J Cancer 113:660–669

    Article  CAS  Google Scholar 

  • Idowu TO, Ogundaini AO, Adesanya SA, Onawunmi GO, Osungunna MO, Obuotor EM, Abegaz BM (2016) Isolation and characterization of chemical constituents from Chrysophyllum albidum G. Don-Holl. stem-bark extracts and their antioxidant and antibacterial properties. Afr J Tradit Complement Altern Med 13(5):182–189

    CAS  Google Scholar 

  • Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Annu Rev Food Sci Technol 3:381–403

    Article  CAS  Google Scholar 

  • Kanatt SR, Arjun K, Sharma A (2011) Antioxidant and antimicrobial activity of legume hulls. Food Res Int 44(10):3182–3187

    Article  CAS  Google Scholar 

  • Kanatt SR, Chander R, Sharma A (2010) Antioxidant and antimicrobial activity of pomegranate peel extract improve shelf life of chicken products. Int J Food Sci Tech 45:216–222

    Article  CAS  Google Scholar 

  • Khamis AM, Essack M, Gao X, Bajic VB (2015) Distinct profiling of antimicrobial peptide families. Bioinformatics 31(6):849–856

    Article  CAS  Google Scholar 

  • Lai R, Lomas LO, Jonczy J, Turner PC, Rees HH (2004) Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J 379:681–685

    Article  CAS  Google Scholar 

  • Lee JY, Boman A, Sun CX, Andersson M, Jornvall H, Mutt V, Boman HG (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A 86:9159–9162

    Article  CAS  Google Scholar 

  • Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43:3590–3599

    Article  CAS  Google Scholar 

  • Lee KH, Hong SY, Oh JE, Lee BJ, Choi BS (1998) Antimicrobial activity and conformation of gaegurin-6 amide and its analogs. Peptides 19:1653–1658

    Article  CAS  Google Scholar 

  • Lee KM, Kim WS, Lim J, Nam S, Youn M, Nam SW, Kim Y, Kim SH, Park W, Park S (2009a) Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J Food Prot 72:325–331

    Article  CAS  Google Scholar 

  • Lee IH, Lee YS, Kim CH, Kim CR, Hong T, Menzel L, Boo LM, Pohl J, Sherman MA, Waring A, Lehrer RI (2001) Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochim Biophys Acta 1527:141–148

    Article  CAS  Google Scholar 

  • Lee JY, Yang ST, Kim HJ, Lee SK, Jung HH, Shin SY, Kim JI (2009b) Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide. BMB Rep 42(9):586–592

    Article  CAS  Google Scholar 

  • Lee IH, Zhao C, Cho Y, Harwig SSL, Cooper EL, Lehrer RI (1997) Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett 400:158–162

    Article  CAS  Google Scholar 

  • Li G, Xu Y, Wang X, Zhang B, Shi C, Zhang W, Xia X (2014) Tannin-rich fraction from pomegranate rind damages membrane of Listeria monocytogenes. Foodborne Pathog Dis 11(4):1–7

    Article  CAS  Google Scholar 

  • Liang Y, Xu Q, Xie H, Zhou Y, Wei X (2010) Chemical constituents from mango seed kernels and their antimicrobial activity. J Trop Subtrop Bot 18(4):445–448

    CAS  Google Scholar 

  • Liu D, Liu J, Li J, Xi L, Yang J, Sun S, Ma J, Zhang F (2017) A potential food biopreservative, CecXJ-37N, non-covalently intercalates into the nucleotides of bacterial genomic DNA beyond membrane attack. Food Chem 217:576–584

    Article  CAS  Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemist 35:13723–13728

    Article  CAS  Google Scholar 

  • Lundy FT, Nelson J, Lockhart D, Greer B, Harriott P, Marley JJ (2008) Antimicrobial activity of truncated alpha-defensin (human neutrophil peptide (HNP)-1) analogues without disulphide bridges. Mol Immunol 45(1):190–193

    Article  CAS  Google Scholar 

  • Malkoski M, Dashper SG, O'Brien-Simpson NM, Talbo GH, Macris M, Cross KJ, Reynolds EC (2001) Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 45:2309–2315

    Article  CAS  Google Scholar 

  • Maloy WL, Kari UP (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37(2):105–122

    Article  CAS  Google Scholar 

  • Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, Narbad A (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103(6):2056–2064

    Article  CAS  Google Scholar 

  • Mandalari G, Bisignano C, D’Arrigo M, Ginestra G, Arena A, Tomaino A, Wickham M (2010) Antimicrobial potential of polyphenols extracted from almond skins. Lett Appl Microbiol 51(1):83–89

    CAS  Google Scholar 

  • Marcos B, Aymerich T, Monfort JM, Garriga M (2008) High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiol 25(1):177–182

    Article  CAS  Google Scholar 

  • Massani MB, Fernandez MR, Ariosti A, Eisenberg P, Vignolo G (2008) Development and characterization of an active polyethylene film containing Lactobacillus curvatus CRL705 bacteriocins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(11):1424–1430

    Article  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368

    Article  CAS  Google Scholar 

  • Mayrhofer M, Paulsen P, Smulders FJM, Hilbert F (2004) Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int J Food Microbiol 97(1):23–29

    Article  CAS  Google Scholar 

  • Moir RD, Dixon GH (1988) Characterization of a protamine gene from the chum salmon (Oncorhynchus keta). J Mol Evol 27:8–16

    Article  CAS  Google Scholar 

  • Moon HJ, Lee SY, Kurata S, Natori S, Lee BL (1994) Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem 116(1):53–58

    Article  CAS  Google Scholar 

  • Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37(6):1077–1089

    Article  CAS  Google Scholar 

  • Moore KS, Bevins C, Brasseur MM, Tomassini N, Turner K, Eck H, Zasloff M (1991) Antimicrobial peptides in the stomach of Xenopus laevis. J Biol Chem 266:19851–19857

    CAS  Google Scholar 

  • Mor A, Hani K, Nicolas P (1994) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269:31635–31641

    CAS  Google Scholar 

  • Moreno-Vásquez MJ, Plascencia-Jatomea M, Ocaño-Higuera VM, Castillo-Yáñez FJ, Rodríguez-Félix F, Rosas-Burgos EC, Graciano-Verdugo AZ (2017) Engineering and antibacterial properties of low-density polyethylene films with incorporated epigallocatechin gallate. J Plast Film Sheet. https://doi.org/10.1177/8756087916689382

  • Morikawa N, Hagiwara K, Nakajima T (1992) Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun 189:184–190

    Article  CAS  Google Scholar 

  • Naasani I, Oh-Hashi F, Oh-Hara T, Feng WY, Johnston J, Chan K, Tsuruo T (2003) Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res 63:824–830

    CAS  Google Scholar 

  • Narayana JL, Chen JY (2015) Antimicrobial peptides: possible anti-infective agents. Peptides 72:88–94

    Article  CAS  Google Scholar 

  • Negi P, Jayaprakasha G (2003) Antioxidant and antibacterial activities of Punica granatum peel extracts. J Food Sci 68(4):1473–1477

    Article  CAS  Google Scholar 

  • O’Leary KA, de Pascual-Tereasa S, Needs PW, Bao YP, O’Brien NM, Williamson G (2004) Effect of flavonoids and vitamin E oncyclooxygenase-2 (COX-2) transcription. Mutat Res 551:245–254

    Article  CAS  Google Scholar 

  • Ovchinnikova TV, Aleshina GM, Balandin SV, Krasnosdembskaya AD, Markelov ML, Frolova EI, Leonova YF, Tagaev AA, Krasnodembsky EG, Kokryakov VN (2004) Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett 577:209–214

    Article  CAS  Google Scholar 

  • Palmieri G, Balestrieri M, Proroga YT, Falcigno L, Facchiano A, Riccio A, Capuano F, Marrone R, Neglia G, Anastasio A (2016) New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence. Food Chem 211:546–554

    Article  CAS  Google Scholar 

  • Park JM, Jung JE, Lee BJ (1994) Antimicrobial peptides from the skin of a Korean frog, Rana rugose. Biochem Biophys Res Commun 205(1):948–954

    Article  CAS  Google Scholar 

  • Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218:408–413

    Article  CAS  Google Scholar 

  • Park CB, Kim MS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  Google Scholar 

  • Park SH, Kim YK, Park JW, Lee BJ, Lee BJ (2000) Solution structure of the antimicrobial peptide gaegurin 4 by 1H and 15N nuclear magnetic resonance spectroscopy. Eur J Biochem 267:2695–2704

    Article  CAS  Google Scholar 

  • Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY (2012) Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS One 7:e50263

    Article  CAS  Google Scholar 

  • Potter R, Hansen LT, Gill TA (2005) Inhibition of foodborne bacteria by native and modified protamine: Importance of electrostatic interactions. Int J Food Microbiol 103(1):23–24

    Article  CAS  Google Scholar 

  • Puravankara D, Boghra V, Sharma RS (2000) Effect of antioxidant principles isolated from mango (Mangifera indica L.) seed kernels on oxidative stability of buffalo ghee (butter-fat). J Sci Food Agr 80(4):522–526

    Article  CAS  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–521

    Article  CAS  Google Scholar 

  • Raftery MJ, Waugh RJ, Bowie JH, Wallace JC, Tyler MJ (1996) The structures of the frenatin peptides from the skin secretion of the giant tree frog Litoria infrafrenata. J Pept Sci 2:117–124

    CAS  Google Scholar 

  • Reygaert WC (2014) The antimicrobial possibilities of green tea. Front Microbiol 5:434

    Article  Google Scholar 

  • Rizzello CG, Losito I, Gobbetti M, Carbonara T, De Bari MD, Zambonin PG (2005) Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci 88:2348–2360

    Article  CAS  Google Scholar 

  • Rodríguez Vaquero MJ, Aredes Fernández PA, Manca de Nadra MC, Strasser de Saad AM (2010) Phenolic compound combinations on Escherichia coli viability in a meat system. J Agric Food Chem 58(10):6048–6052

    Article  CAS  Google Scholar 

  • Rozek T, Waugh RJ, Steinborner ST, Bowie JH, Tyler MJ, Wallace JC (1998) The Maculatin peptides from the skin glands of the tree frog Litoria genimaculata: a comparison of the structures and antibacterial activities of Maculatin 1.1 and Caerin 1.1. J Pept Sci 4:111–115

    Article  CAS  Google Scholar 

  • Rydlo T, Miltz J, Mor A (2006a) Eukaryotic antimicrobial peptides: promises and premises in food safety. J Food Sci 71:R125–R135

    Article  CAS  Google Scholar 

  • Rydlo T, Rotem S, Mor A (2006b) Antibacterial properties of dermaseptin S4 derivatives under extreme incubation conditions. Antimicrob Agents Chemother 50(2):490–497

    Article  CAS  Google Scholar 

  • Saavedra MJ, Borges A, Dias C, Aires A, Bennett RN, Rosa ES, Simões M (2010) Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med Chem 6:174–183

    Article  CAS  Google Scholar 

  • Sadik CD, Sies H, Schewe T (2003) Inhibition of 15-lipoxygenases by flavonoids: structure–activity relations and mode of action. Biochem Pharmacol 65:773–781

    Article  CAS  Google Scholar 

  • Sadiq S, Imran M, Habib H, Shabbir S, Ihsan A, Zafar Y, Hafeez FY (2016) Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. LWT Food Sci Technol 71:227–233

    Article  CAS  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Article  Google Scholar 

  • Schewe T, Sadik C, Klotz LO, Yoshimoto T, Kuhn H, Sies H (2001) Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol Chem 382:1687–1696

    Article  CAS  Google Scholar 

  • Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    Article  CAS  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  CAS  Google Scholar 

  • Shamova O, Brogden KA, Zhao C, Nguyen T, Kokryakov VN, Lehrer RI (1999) Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun 67(8):4106–4111

    CAS  Google Scholar 

  • Shi J, Ross CR, Chengappa MM, Style MJ, McVey DS, Blecha F (1996) Antibacterial activity of a synthetic peptide (PR-26) derived from PR-39, a proline arginine-rich neutrophil antimicrobial peptide. Antimicrob Agents Chemother 40:115–121

    CAS  Google Scholar 

  • Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T (2001) Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother 45:3198

    Article  CAS  Google Scholar 

  • Shiota S, Shimizu M, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T (1999) Marked reduction in the minimum inhibitory concentration (MIC) of β-Lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an Ingredient of Green Tea (Camellia sinensis) Biol. Pharm Bull 22:1388–1390

    Article  CAS  Google Scholar 

  • Shiota S, Shimizu M, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T (2000) Restoration of effectiveness of β-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol Lett 185:135

    CAS  Google Scholar 

  • Silphaduang U, Colorni A, Noga EJ (2006) Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish. Dis Aquat Org 72:241–252

    Article  CAS  Google Scholar 

  • Silva ON, de la Fuente-Núñez C, Haney EF, Fensterseifer ICM, Ribeiro SM, Porto WF, Brown P, Faria-Junior C, Rezende TMB, Moreno SE, Lu TK, Hancock REW, Franco OL (2016) An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci Rep 6:35465. https://doi.org/10.1038/srep35465

    Article  CAS  Google Scholar 

  • Simmaco M, Mignogna G, Barra D, Bossa F (1993) Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta. FEBS Lett 324:159–161

    Article  CAS  Google Scholar 

  • Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D (1996) Temporins, antimicrobial peptides from the european red frog Rana temporaria. Eur J Biochem 242:788–792

    Article  CAS  Google Scholar 

  • Singh JP, Kaur A, Singh N, Nim L, Shevkani K, Kaur H, Arora DS (2016) In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT-Food Sci Technol 65:1025–1030

    Article  CAS  Google Scholar 

  • Sivarooban T, Hettiarachchy NS, Johnson MG (2008) Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res Int 41(8):781–785

    Article  CAS  Google Scholar 

  • Sousa JC, Berto RF, Gois EA, Fontenele-Cardi NC, Honório JE Jr, Konno K, Richardson M, Rocha MF, Camargo AA, Pimenta DC, Cardi BA, Carvalho KM (2009) Leptoglycin: a new glycine/leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 54:23–32

    Article  CAS  Google Scholar 

  • Steinborner ST, Currie GJ, Bowie JH, Wallace JC, Tyler MJ (1998) New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. Comparison of the activities of the caerin 1 peptides from the genus Litoria. J Pept Res 51:121–126

    Article  CAS  Google Scholar 

  • Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S (2013) In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric 93(13):3205–3208

    Article  CAS  Google Scholar 

  • Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540

    Article  CAS  Google Scholar 

  • Suárez-Quiroz ML, Taillefer W, López Méndez EM, González-Ríos O, Villeneuve P, Figueroa-Espinoza MC (2013) Antibacterial activity and antifungal and anti-mycotoxigenic activities against Aspergillus flavus and A. ochraceus of green coffee chlorogenic acids and dodecyl chlorogenates. J Food Saf 33(3):360–368

    Article  CAS  Google Scholar 

  • Sundararajan VS, Gabere MN, Pretorius A, Adam S, Christoffels A, Lehväslaiho M, Archer JA, Bajic VB (2012) DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Res 40:D1108–D1112

    Article  CAS  Google Scholar 

  • Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420

    Article  CAS  Google Scholar 

  • Suzuki S, Ohe Y, Okubo T, Kakegawa T, Tatemoto K (1995) Isolation and characterization of novel antimicrobial peptides, Rugosins A, B, and C, from the skin of the frog, Rana rugose. Biochem Biophys Res Commun 212(1):249–254

    Article  CAS  Google Scholar 

  • Taguri T, Tanaka T, Kouno I (2004) Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull 27(12):1965–1969

    Article  CAS  Google Scholar 

  • Takahashi H, Takahashi T, Miya S, Yokoyama H, Kuda T, Kimura B (2015) Growth inhibition effects of ferulic acid and glycine/sodium acetate on Listeria monocytogenes in coleslaw and egg salad. Food Control 57:105–109

    Article  CAS  Google Scholar 

  • Tasiemski A, Vandenbulcke F, Mitta G, Lemoine J, Lefebvre C, Sautiere PE, Salzet M (2004) Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J Biol Chem 279:30973–30982

    Article  CAS  Google Scholar 

  • Tavares IMC, Lago-Vanzela ES, Rebello LPG, Ramos AM, Gómez-Alonso S, García-Romero E, Da-Silva R, Hermosín-Gutiérrez I (2016) Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Res Int 82:1–13

    Article  CAS  Google Scholar 

  • Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177

    Article  CAS  Google Scholar 

  • Thouzeau C, Le Maho Y, Froget G, Sabatier L, Le Bohec C, Hoffmann JA, Bulet P (2003) Spheniscins, avian beta-defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. J Biol Chem 278(51):51053–51058

    Article  CAS  Google Scholar 

  • Tossi A, Sandri L (2002) Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 8:743–761

    Article  CAS  Google Scholar 

  • Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, Tanaka T, Iinuma M (1993) Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 50:27–34

    Article  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42(9):2206–2214

    CAS  Google Scholar 

  • Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl Environ Microbiol 68(4):1561–1568

    Article  CAS  Google Scholar 

  • Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42:D1154–D1158

    Article  CAS  Google Scholar 

  • Wang G (2015) Improved methods for classification, prediction and design of antimicrobial peptides. Methods Mol Biol 1268:43–66

    Article  CAS  Google Scholar 

  • Wang KJ, Huang WS, Yang M, Chen HY, Bo J, Li SJ, Wang GZ (2007) A male-specific expression gene, encodes a novel anionic antimicrobial peptide, scygonadin, in Scylla serrata. Mol Immunol 44:1961–1968

    Article  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937

    Article  CAS  Google Scholar 

  • Wang X, Yue T, Lee TC (2015) Development of pleurocidin-poly (vinyl alcohol) electrospun antimicrobial nano fibers to retain antimicrobial activity in food system application. Food Control 54:150–157

    Article  CAS  Google Scholar 

  • Wen A, Delaquis P, Stanich K, Toivonen P (2003) Antilisterial activity of selected phenolic acids. Food Microbiol 20:305–311

    Article  CAS  Google Scholar 

  • Won HS, Kang SJ, Lee BJ (2009) Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. Biochim Biophys Acta 1788:1620–1629

    Article  CAS  Google Scholar 

  • World Health Organization [WHO] (1995) The use of essential drugs. Sixth report of the WHO expert committee, WHO Tech. Rep. Ser. No. Rome, WHO, p 850

    Google Scholar 

  • Xiong LG, Chen YJ, Tong JW, Huang JA, Li J, Gong YS, Liu ZH (2017) Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress. Food Chem 217:196–204

    Article  CAS  Google Scholar 

  • Xu X, Lai R (2015) The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 115(4):1760–1846

    Article  CAS  Google Scholar 

  • Xue J, Davidson PM, Zhong Q (2013) Thymol nanoemulsified by whey protein-maltodextrin conjugates: the enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol. J Agric Food Chem 61:12720–12726

    Article  CAS  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

  • Zasloff M, Martin B, Chen HC (1988) Antimicrobial activity of synthetic magainins peptides and several analogues. Proc Natl Acad Sci U S A 85(3):910

    Article  CAS  Google Scholar 

  • Zeng XC, Wang SX, Zhu Y, Zhu SY, Li WX (2004) Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides 25:143–150

    Article  CAS  Google Scholar 

  • Zhang YM, Rock CO (2004) Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthesis. J Biol Chem 279:30994–31001

    Article  CAS  Google Scholar 

  • Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K (2007) Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides 28:1304–1310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ASV is thankful to Professor Narpinder Singh, Department of Food Science and Technology, Guru Nanak Dev University, Amritsar for providing financial assistance from J C Bose National Fellowship (2016-2021) awarded by Department of Science & Technology, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amardeep Singh Virdi or Narpinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Virdi, A.S., Singh, N. (2017). Antimicrobial Peptides and Polyphenols: Implications in Food Safety and Preservation. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_7

Download citation

Publish with us

Policies and ethics