Skip to main content

Principles of Food Preservation

  • Chapter
  • First Online:
Microbial Control and Food Preservation

Abstract

Food preservation is an action or method used to maintain foods at certain desirable properties or quality to obtain maximum benefit. A good method of food preservation is one that slows down or prevents altogether the action of the agents of spoilage without damaging the food. To achieve this, certain basic methods are applied depending on the food types. Food preservation has been an essential activity throughout human history. The cycle of seasons brings periods of shortage and abundance of various foods at different times of the year. Preservation makes it possible to consume some of these foods during off seasons, throughout the year. Food preservation usually involves controlling or preventing growth of microrganisms or minimizing the quality degradation due to microbial spoilage or unwanted chemical changes in foods such as rancidity due to oxidation of fats over time. Preservation of foods is no longer simple and straightforward today; it has evolved to a highly inter-disciplinary field of science. In recent years, many new sophisticated preservation techniques have developed to extend the quality and shelf-life, minimize risk, protect the environment, and improve functional, sensory, and nutritional properties. Many of emerging preservation technologies have already reached commercial adoption in specific applications while many others remain promising. Development of suitable equipment, especially for continuous processing for a variety of foods and standardization of the process parameters for easy regulatory approval will pave the way for improved food preservation. The objective of this chapter was to examine the science and technology involved in the manipulation of conventional as well as sophisticated emerging preservation methods.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abshire RL, Dunton H (1981) Resistance of selected strains of Pseudomonas aeruginosa to low-intensity ultraviolet radiation. Appl Environ Microbiol 41:1419–1423

    CAS  Google Scholar 

  • Aguilo-Aguayo I, Charles F, Renard CMGC, Page D, Carlin F (2013) Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biol Technol 86:29–36

    Article  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alisky J, Iczkowski K, Rapoport A, Troitsky N (1998) Bacteriophages show promise as antimicrobial agents. J Infect 36:5–15

    Article  CAS  Google Scholar 

  • Bank HL, John JF, Atkins LM, Schmedhl MK, Dratch RJ (1991) Bactericidal action of modulated ultraviolet light on six groups of Salmonella. Infect Control Hosp Epidemiol 12(8):486–488

    Article  CAS  Google Scholar 

  • Bengtsson R, Birdsall E, Feilden S, Bhattiprolu S, Bhale S, Lima M (2010) Ohmic and inductive heating. In: Hui YH (ed) Handbook of food science, technology and engineering, vol 3. CRC Press, Boca Raton, pp 121–127

    Google Scholar 

  • Bialka KL, Demirci A (2007) Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV light. J Food Sci 72:391–396

    Article  CAS  Google Scholar 

  • Bialka KL, Demirci A (2008) Efficacy of pulsed UV light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. J Food Sci 73:201–207

    Article  CAS  Google Scholar 

  • Bigwood T, Hudson JA, Billington C (2009) Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol Lett 291(1):59–64

    Article  CAS  Google Scholar 

  • Bintsis T, Litopoulou-Tzanetaki E, Robinson RK (2000) Existing and potential applications of ultraviolet light in the food industry-a critical review. J Sci Food Agric 80:637–645

    Article  CAS  Google Scholar 

  • Bolton JR, Linden KG (2003) Standardization of methods for fluence (UV dose) determinationin bench-scale UV experiments. J Environ Eng 129:209–216

    Article  CAS  Google Scholar 

  • Butz P, Tauscher B (2002) Emerging technologies: chemical aspects. Food Res Int 35:279–284

    Article  CAS  Google Scholar 

  • Chan TVCT, Tang J, Younce F (2004) 3-dimensional numerical modeling of an industrial radio frequency heating systems using finite elements. J Microw Power Electromagn Energy 39(2):87–105

    Article  Google Scholar 

  • Chang JCH, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD (1985) UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol 49:1361–1365

    CAS  Google Scholar 

  • Charles F, Vidal V, Olive F, Filgueiras H, Sallanon H (2013) Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innovative Food Sci Emerg Technol 18:190–195

    Article  Google Scholar 

  • Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Co., Lancaster

    Google Scholar 

  • Cocito C, Gaetano G, Delfini C (1995) Rapid extraction of aroma compounds in must and wine by means of ultrasound. Food Chem 52:311–320

    Article  CAS  Google Scholar 

  • De Gennaro L, Cavella S, Romano R, Masi P (1999) The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. J Food Eng 39:401–407

    Article  Google Scholar 

  • Decareau RV (1985) Chap. 1, Microwaves in the food processing industry. Academic Press, New York

    Google Scholar 

  • Decareau RV, Peterson RA (1986) Microwave processing and engineering. Ellis Horwood Ltd. & VCH Publishers, Deerfield Beach, FL

    Google Scholar 

  • Demirci A (2002) Novel processing technologies for food safety. J Assoc Food Drug Officials 66(4):1–8

    Google Scholar 

  • Dion M, Parker W (2013) Steam sterilization principles. Pharm Eng 33(6):1–8

    Google Scholar 

  • Dunn J (1996) Pulsed light and pulsed electric field for foods and eggs. Poult Sci 75:1133–1136

    Article  CAS  Google Scholar 

  • Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyer K, Pairchaud F, Hofman G (1991) Methods and apparatus for preservation of foodstuffs, US Patent no. 5, 034, 235

    Google Scholar 

  • Dunn J, Ott T, Clark W (1995) Pulsed light treatment of food and packaging. Food Technol 49:95–98

    Google Scholar 

  • FDA (Food and Drug Administration) (2015) 21 CFR Part 179. Irradiation in the production, processing and handling of food. Fed Regist 65:71056–71058

    Google Scholar 

  • Fine F, Gervais P (2004) Efficiency of pulsed UV light for microbial decontamination of food powders. J Food Prot 67(4):787–792

    Article  CAS  Google Scholar 

  • Food and Drug Administration-Center for Food Safety and Applied Nutrition (FDACFSAN) (2000) Kinetics of microbial inactivation for alternative food processing technologies—Ohmic and inductive heating. http://www.cfsan.fda.gov/~comm/ift-ohm.html

  • Gachovska TK, Kumar S, Thippareddi H, Subbiah J, Williams F (2008) Ultraviolet and pulsed electric field treatments have additive effect on inactivation of Escherichia coli in apple juice. J Food Sci 73:M412–M417

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F (2007) High pressure carbon dioxide inactivation of microorganisms in foods: past, present and future. Int J Food Microbiol 117:1–28

    Article  CAS  Google Scholar 

  • Gardner DW, Shama G (2000) Modeling UV induced inactivation of microorganisms on surfaces. J Food Prot 63:63–70

    Article  CAS  Google Scholar 

  • Geveke DJ, Brunkhorst C (2004) Inactivation of Escherichia coli in apple juice by radio frequency electric fields. J Food Sci 69(2004):134–138

    Google Scholar 

  • Geveke DJ, Kozempel M, Scullen OJ, Brunkhorst C (2002) Radio frequency energy effects on microorganisms in food. Innovation Food Sci Emerg Technol 3:133–138

    Article  Google Scholar 

  • Gomez PL, Garcia-Loredo A, Nieto A, Salvatori DM, Guerrero S, Alzamora SM (2012) Effect of pulsed light combined with an anti-browning pre treatment on quality of fresh cut apple. Innovative Food Sci Emerg Technol 16:102–112

    Article  CAS  Google Scholar 

  • Griffin SJ, Hull JB, Lai E (2001) Development of a novel ultrasound monitoring system for container filing operations. J Mater Process Technol 109:72–77

    Article  Google Scholar 

  • Guerra A, Jonsson G, Rasmussen A, Waagner Nielsen E, Edelsten D (1997) Low cross-flow velocity microfiltration of skim milk for removal of bacterial spores. Int Dairy J 7(12):849–861

    Article  Google Scholar 

  • Hadjok C, Mittal GS, Warriner K (2008) Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. J Appl Microbiol 104(4):1014–1024

    Article  CAS  Google Scholar 

  • Haeggstrom E, Luukkala M (2000) Ultrasonic monitoring of beef temperature during roasting. Swiss Society Food Sci Technol (Lebensm-Wiss u-Technol) 33:465–470

    CAS  Google Scholar 

  • Harm W (1980) Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge, pp 79–91

    Google Scholar 

  • Hauptmann P, Hoppe N, Puttmer A (2002) Application of ultrasonic sensors in the process industry. Meas Sci Technol 13:R73–R83

    Article  CAS  Google Scholar 

  • Hillegas SL, Demirci A (2003) Inactivation of Closridium sporogenes in clover honey by pulsed UV light treatment. E-journal-CIGR

    Google Scholar 

  • Huang Y, Toledo R (1982) Effect of high doses of high and low intensity UV irradiation on the surface microbiological counts and storage-life of fish. J Food Sci 47:1667–1731

    Article  Google Scholar 

  • Hulsen U (1999) Alternative heat treatment processes. European Dairy Magazine 3:20–24

    Google Scholar 

  • Jun S, Irudayaraj J, Demirci A, Geiser D (2003) Pulsed UV light treatment of corn meal for inactivation of Aspergillus niger spores. Int J Food Sci Technol 38:883–888

    Article  CAS  Google Scholar 

  • Kasman LM, Kasman A, Westwater C, Dolan J, Schmidt MG, Norris JS (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J Virol 76:5557–5564

    Article  CAS  Google Scholar 

  • Kim J-G, Yousef AE, Dave S (1999) Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62(9):1971–1087

    Article  Google Scholar 

  • Kim T, Silva JL, Chen TC (2002) Effects of UV irradiation on selected pathogens in peptone water and on stainless steel and chicken meat. J Food Prot 65(7):1142–1145

    Article  CAS  Google Scholar 

  • Kim B, Kim A, Shin J (2013) Effect of sterilization by intense pulsed light on radiation-resistant bacterium, Micrococcus roseus. Korean J Food Sci Technol 45(2):248–251

    Article  Google Scholar 

  • Klein BP (1987) Nutritional consequences of minimal processing of fruits and vegetables. J Food Qual 10(3):179–193

    Article  Google Scholar 

  • Knorr D, Zenker M, Heinz V, Lee D-U (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15:261–266

    Article  CAS  Google Scholar 

  • Krishnamurthy K (2006) Decontamination of milk and water by pulsed UV-light and infrared heating. PhD dissertation. Dept. of Agricultural and biological Engineering, The Pennsylvania State University, University Park

    Google Scholar 

  • Krishnamurthy K, Demirci A, Irudayaraj J (2007) Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. J Food Sci 72(7):M233–M239

    Article  CAS  Google Scholar 

  • Kulmyrzaev A, Cancelliere C, McClements DJ (2000) Characterization of aerated foods using ultrasonic reflectance spectroscopy. J Food Eng 46:235–241

    Article  Google Scholar 

  • Kuo F-L, Carey JB, Ricke SC (1997) UV irradiation of shell eggs: effect on populations of aerobes, molds, and inoculated Salmonella typhimurium. J Food Prot 60(6):639–643

    Article  Google Scholar 

  • Lee BH, Kermasha S, Baker BE (1989) Thermal, ultrasonic and ultraviolet inactivation of Salmonella in thin films of aqueous media and chocolate. Food Microbiol 6:143–152

    Article  Google Scholar 

  • Leizerson S, Shimoni E (2005a) Stability and sensory shelf life of orange juice pasteurized by continuous Ohmic heating. J Agric Food Chem 53:4012–4018

    Article  CAS  Google Scholar 

  • Leizerson S, Shimoni E (2005b) Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice. J Agric Food Chem 53:3519–3524

    Article  CAS  Google Scholar 

  • Leverentz B, Conway WS, Alavidze Z, Janiesiewicz WJ, Rucks Y, Camp MJ, Chighladze E, Sulakvelidze A (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot 64(8):1116–1121

    Article  CAS  Google Scholar 

  • Levy C, Aubert X, Lacour B, Carlin F (2012) Relevant factors affecting microbial surface decontamination by pulsed light. Int J Food Microbiol 152:168–174

    Article  Google Scholar 

  • Lillard HS (1993) Bactericidal effect if chlorine on attached salmonellae with and without sonication. J Food Prot 56(8):716–717

    Article  CAS  Google Scholar 

  • Lillard HS (1994) Decontamination of poultry skin by sonication. Food Technol, December, 72–73

    Google Scholar 

  • Luechapattanaporn K, Wang Y, Wang J, Al-Holy M, Kang DH, Tang J, Hallberg LM (2004) Microbial safety in radio-frequency processing of packaged foods. J Food Sci 69(7):201–206

    Article  Google Scholar 

  • Luechapattanaporn K, Wang YF, Wang J, Tang JM, Hallberg LM, Dunne CP (2005) Sterilization of scrambled eggs in military polymeric trays by radio frequency energy. J Food Sci 70(4):288–294

    Article  Google Scholar 

  • Manas P, Pagan R, Raso J, Sala FJ, Condon S (2000) Inactivation of Salmonella Enteriditis, Salmonella Typhimurium, and Salmonella Senftenberg by ultrasonic waves under pressure. J Food Prot 63(4):451–456

    Article  CAS  Google Scholar 

  • Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:S253–S260

    Article  CAS  Google Scholar 

  • McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6:293–299

    Article  CAS  Google Scholar 

  • McDonald KF, Curry RD, Clevenger TE, Unklesbay K, Eisenstrack A, Golden J, Morgan RD (2000) A comparison of pulsed and continuous ultraviolet light sources for the decontamination of surfaces. IEEE Trans Plasma Sci 28(5):1581–1587

    Article  CAS  Google Scholar 

  • Meredith RJ (1998) Engineers’ handbook of industrial microwave heating. Institute of Electrical Engineers, London

    Book  Google Scholar 

  • Metaxas AC, Meredith RJ (1993) Industrial microwave heating. Peter Peregrinus, London

    Google Scholar 

  • Mohammadbeygy T (2013) Shelf life extension of preformed pizza using pulsed ultraviolet light. MSc Thesis, Department of Bioresource Engineering, McGill University, Quebec, Canada

    Google Scholar 

  • Mukhopadhyay S, Tomasula PM, Van Hekken DL, Luchansky JB, Call JE, Porto-Fett ACS (2009) Effectiveness of cross-flow microfiltration for removal of microorganisms associated with unpasteurized liquid egg white. J Food Sci 74(6):319–327

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Tomasula PM, Van Hekken DL, Luchansky JB, Porto-Fett ACS, Call JE (2010) Removal of Salmonella Enteritidis from commercial unpasteurized liquid egg white using pilot scale cross flow tangential microfiltration. Int J Food Microbiol 142(3):309–317

    Article  Google Scholar 

  • Mukhopadhyay S, Tomasula PM, Luchansky JB, Porto-Fett ACS, Call JE (2011) Removal of Bacillus anthracis Sterne spore from commercial unpasteurized liquid egg white using crossflow microfiltration. J Food Process Preservation 35:550–562

    Article  Google Scholar 

  • Mukhopadhyay S, Ukuku DO, Juneja VK (2014) Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control 44:110–117

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Ukuku DO, Juneja V (2015) Effects of integrated treatment of nonthermal UV-C light and various antimicrobial wash on Salmonella enterica on plum tomatoes. Food Control 56:147–154

    Article  CAS  Google Scholar 

  • Murugesan R (2010) Enhancement of the antioxidant content of elderberry (Sambucus nigra) fruit by pulsed ultraviolet light followed by the spray drying of the elderberry juice. MSc Thesis, Department of Bioresource Engineering, McGill University, Quebec

    Google Scholar 

  • Neppiras EA (1980) Acoustic cavitation thresholds and cyclic processes. Ultrasonics 18:201–209

    Article  Google Scholar 

  • Nicoli MC, Anese M, Parpinel M (1999) Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10(3):94–100

    Article  CAS  Google Scholar 

  • Nicorescu I, Nguyen B, Moreau-Ferret M, Agoulon A, Chevalier S, Orange N (2013) Pulsed light inactivation of Bacillus subtilis vegetative cells in suspensions and spices. Food Control 31:151–157

    Article  Google Scholar 

  • O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 70:3417–3424

    Article  CAS  Google Scholar 

  • Oms-Oliu G, Aguilo-Aguayo I, Martin-Belloso O, Soliva-Fortuny R (2010) Effect of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biol Technol 56:216–222

    Article  CAS  Google Scholar 

  • Ozer NP, Demirci A (2006) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int J Food Sci Technol 41:354–360

    Article  CAS  Google Scholar 

  • Pagan R, Manas P, Raso J, Condon S (1999) Bacterial resistance to ultrasonic waves under pressure at nonlethal (manosonication) and lethal (manothermosonication) temperatures. Appl Environ Microbiol 65(1):297–300

    CAS  Google Scholar 

  • Pascall MA, Richtsmeier J, Riemer J, Farahbakhsh B (2002) Non-destructive packaging seal strength analysis and leak detection using ultrasonic imaging. Packag Technol Sci 15:275–285

    Article  CAS  Google Scholar 

  • Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: a review. Int J Food Microbiol 87:207–216

    Article  CAS  Google Scholar 

  • Pollock, A. M. (2007). Characterization of pulsed light treatment on the shelf life and safety of vacuum packaged cold smoked salmon. MSc Thesis, Department of Food Science and Agricultural Chemistry, McGill University, Quebec

    Google Scholar 

  • Povey MJW (1998) Ultrasonics of food. Contemp Phys 39(6):467–478

    Article  Google Scholar 

  • Preserving food without freezing or canning. Chelsea Green Publishing, 1999

    Google Scholar 

  • Rahman MS (2007) Osmotic dehydration of foods. In: Rahman MS (ed) Handbook of food preservation, 2nd edn. CRC Press, Boca Raton

    Chapter  Google Scholar 

  • Rajkovic A, Tomasevic I, Smigic N, Uyttendaele N, Radovanoic R, Devlieghere F (2010) Pulsed UV light as an intervention strategy against Listeria monocytogenes and Escherichia coli O157: H7 on the surface of a meat slicing knife. J Food Eng 100:446–451

    Article  Google Scholar 

  • Raso J, Barbosa-Canovas GV (2003) Nonthermal preservation of goods using combined processing techniques. Crit Rev Food Sci Nutr 43:265–285

    Article  Google Scholar 

  • Raso J, Pagan R, Condon S, Sala FJ (1998) Influence of temperature and pressure on the lethality of ultrasound. Appl Environ Microbiol 64:465–471

    CAS  Google Scholar 

  • Ravishankar S, Maks N (2007) Basic food microbiology. In: Juneja V, Tewari G (eds) Advances in thermal and non-thermal food preservation. Blackwell Publishing, Ames, Iowa

    Google Scholar 

  • Regier M, Rother M, Schuchmann HP (2010) Alternative heating technologies. In: Ortega-Rivas E (ed) Processing effects on safety and quality of foods. CRC Press, Boca Raton, FL, pp 188–245

    Google Scholar 

  • Reidmiller JS, Baldeck JD, Rutherford GC, Marquis RE (2003) Characterization of UV-peroxide killing of bacterial spores. J Food Prot 66:1233–1240

    Article  CAS  Google Scholar 

  • Richardson PS (2001) Thermal technologies in food processing, 2nd edn. Woodhead Publishing Limited, Cambridge, UK, pp 1–3

    Book  Google Scholar 

  • Rosenfeldt EJ, Linden KG, Canonica S, van Gunten U (2006) Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res 40:3695–3704

    Article  CAS  Google Scholar 

  • Ross AI, Griffiths MW, Mittal GS, Deeth HC (2003) Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol 89:125–138

    Article  Google Scholar 

  • Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, Farish O (1999) Pulsed UV light inactivation of microbial pathogens. Appl Environ Microbiol 65:2833–2836

    Google Scholar 

  • Saboya LV, Maubois JL (2000) Current developments of micro filtration technology in the dairy industry. Lait 80:541–553

    Article  CAS  Google Scholar 

  • Saggin R, Coupland JN (2001) Non-contact ultrasonic measurements in food materials. Food Res Int 34:865–870

    Article  Google Scholar 

  • Samari S (1994) Ultrasonic inspection methods for food products. Swiss Soc Food Sci Technol (Lebensm-Wiss u-Technol) 27:210–213

    Google Scholar 

  • Sams AR, Feria R (1991) Microbial effects of ultrasonication of broiler drumstick skin. J Food Sci 56(1):247–248

    Article  Google Scholar 

  • Scherba G, Weigel RM, O’Brien JWD (1991) Quantitative assessment of the Germicidal efficacy of ultrasonic energy. Appl Environ Microbiol 57(7):2079–2084

    CAS  Google Scholar 

  • Seymour IJ, Burfoot D, Smith RL, Cox LA, Lockwood A (2002) Ultrasound decontamination of minimally processed fruits and vegetables. Int J Food Sci Technol 37:547–557

    Article  CAS  Google Scholar 

  • Sharma RR, Demirci A (2003) Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface methodology. J Food Sci 68:1448–1453

    Article  CAS  Google Scholar 

  • Shechmeister IL (1983) Sterilization by ultraviolet irradiation. In: Block SS (ed) Disinfection, sterilization, and preservation, 3rd edn. Leas and Febiger, Philadelphia, pp 553–560

    Google Scholar 

  • Sherba G, Weigel RM, O’Brien JWD (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. Appl Environ Microbiol 57:2079–2084

    Google Scholar 

  • Sigfusson H, Ziegler GR, Coupland JN (2004) Ultrasonic monitoring of food freezing. J Food Eng 62:263–269

    Article  Google Scholar 

  • Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  Google Scholar 

  • Sommers CH, Sites JE, Musgrove M (2010) Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces. J Food Saf 30:470–479

    Article  Google Scholar 

  • Stabel JR, Lambertz A (2004) Efficacy of pasteurization conditions for the inactivation of Mycobacterium avium subsp. paratuberculosis in milk. J Food Prot 67(12):2719

    Article  CAS  Google Scholar 

  • Stermer RA, Lasater-Smith M, Brasington CF (1987) Ultra-violet radiation-an effective bactericide for fresh meat. J Food Prot 50:108–111

    Article  Google Scholar 

  • Sumner SS, Wallner-Pendleton EA, Froning GW, Stetson LV (1995a) Inhibition of Salmonella typhimurium on agar medium and poultry skin by ultraviolet energy. J Food Prot 59(3):319–321

    Article  Google Scholar 

  • Sumner S, Wallner-Pendleton E, Froning G, Stetson L (1995b) Inhibition of Salmonella typhimurium on agar medium and poultry skin by ultraviolet energy. J Food Prot 59(319):321

    Google Scholar 

  • Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VCH Publishers, New York

    Google Scholar 

  • Tewari G (2007) Microwave and radiofrequency heating. In: Tewari G, Juneja VK (eds) Advances in thermal and non-thermal food preservation. Blackwell, Ames, IA, pp 91–98

    Chapter  Google Scholar 

  • Tomasula PM, Mukhopadhyay S, Datta N, Porto-Fett AC, Call JE, Luchansky JB, Renye J, Tunick MH (2011) Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk. J Dairy Sci 94:4277–4291

    Article  CAS  Google Scholar 

  • U.S. Dept. of Health and Human Services (2009) Public Health Service and Food and Drug Admin. Grade “A” Pasteurized Milk Ordinance. 2009 Revision

    Google Scholar 

  • U.S. Food and Drug Admin (2006) Dept. of Health and Human Services. Code of Federal Regulations, Part 1, Title 21, Sections 131, 133, and 135. April 2006 Revision. http://www.gpoaccess.gov/cfr/index.html, click here for a listing of product Standards of Identity

  • Uesagi AR, Moraru C (2009) Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin. J Food Prot 72:347–353

    Article  Google Scholar 

  • USDA (2000) U. S. Food and Drug Administration Report. Kinetics of Microbial Inactivation for Alternative Food Processing Technologies. http://www.vm.cfsan.fda.gov/~comm/ift-us.html

  • US-FDA (2001) Hazard analysis and critical control point (HACCP); procedures for the safe and sanitary processing and importing of juice; final rule (21 CFR Part 120). Fed Regist 66:6137–6202

    Google Scholar 

  • Vicente A, Castro IA (2007) Novel thermal processing technologies. In: Tewari G, Juneja VK (eds) Advances in thermal and nonthermal food preservation. Blackwell, Ames, IA, pp 99–131

    Chapter  Google Scholar 

  • Von Hippel AR (1954) Dielectric materials and applications. MIT Press, Cambridge, MA

    Google Scholar 

  • Wallner-Pendleton EA, Sumner SS, Froning GW, Stetson LE (1994) The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poult Sci 73:1327–1333

    Article  CAS  Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellema A, van Boekel MAJS (1999) Dairy technology. Principles of milk properties and processes. New York, Marcel Dekker

    Google Scholar 

  • Wang Y, Wig TD, Tang J, Hallberg LM (2003) Sterilization of foodstuff using radiofrequency heating. J Food Sci 68:539–544

    Article  CAS  Google Scholar 

  • Whichard JM, Sriranganathan N, Pierson FW (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix 01 in liquid culture and on chicken frankfurters. J Food Prot 66:220–225

    Article  Google Scholar 

  • Withers PM (1996) Ultrasonic, acoustic and optical techniques for the non-invasive detection of fouling in food processing equipment. Trends Food Sci Technol 7:293–298

    Article  CAS  Google Scholar 

  • Wong E, Linton RH, Gerrard DE (1998) Reduction of Escherichia coli and Salmonella senftenberg on pork skin and port muscle using ultraviolet light. Food Microbiol 15:415–423

    Article  Google Scholar 

  • Wrigley DM, Llorca NG (1992) Decrease of Salmonella Typhimurium in skim milk and egg by heat and ultrasonic wave treatment. J Food Prot 55:678–680

    Article  Google Scholar 

  • Yaun BR, Sumner SS, Eifert JD, March JE (2004) Inhibition of pathogens on fresh produce by ultraviolet energy. Int J Food Microbiol 90:1–8

    Article  Google Scholar 

  • Zheng L, Sun DW (2006) Innovative applications of power ultrasound during food freezing processes-a review. Trends Food Sci Technol 17:16–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarsan Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhopadhyay, S., Ukuku, D.O., Juneja, V.K., Nayak, B., Olanya, M. (2017). Principles of Food Preservation. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_2

Download citation

Publish with us

Policies and ethics