Skip to main content

Non-thermal Methods for Food Preservation

  • Chapter
  • First Online:
Book cover Microbial Control and Food Preservation

Abstract

Consumers are looking for convenient, fresh-like, minimally processed foods. Therefore, new trends in food processing, product development, and quality assurance are promoting intense research on alternative methods for food preservation and the concept of non-thermal treatments was developed. These technologies allow the food sector to meet product safety and shelf-life requirements while reducing the impacts on food quality attributes. Foods can be non-thermally processed by (1) cold plasma, (2) high hydrostatic pressure (HHP), (3) microwave and radio-frequency and (4) dense phase carbon dioxide, among other techniques. This chapter includes a brief summary of the latest developments of some of these novel technologies. In addition, a brief discussion about the use of nanomaterials for food applications has been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW (2004) An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186:6133–6141

    Article  CAS  Google Scholar 

  • Aertsen A, De Spiegeleer P, Vanoirbeek K, Lavilla M, Michiels CW (2005) Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 71(5):2226–2231

    Article  CAS  Google Scholar 

  • Ahn J, Balasubramaniam VM (2007) Physiological responses of Bacillus amyloliquefaciens spores to high pressure. J Microbiol Biotechnol 17(3):524–529

    CAS  Google Scholar 

  • Alpas H, Kalchayanand N, Bozoglu F, Sikes A, Dunne CP, Ray B (1999) Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Appl Environ Microbiol 65(9):4248–4251

    CAS  Google Scholar 

  • Anonymous (1996) Sterilization surfaces by irradiation with microwaves. NASA Tech Briefs 140

    Google Scholar 

  • Aymerich T, Picouet PA, Monfort JM (2008) Decontamination technologies for meat products. Meat Sci 78(1–2):114–129

    Article  CAS  Google Scholar 

  • Ayoub JA, Berkowitz D, Kenyon EM, Wadsworth CK (1974) Continuous microwave sterilization of meat in flexible pouches. J Food Sci 39:309–313

    Article  Google Scholar 

  • Baert L, Debevere J, Uyttendaele M (2009) The efficacy of preservation methods to inactivate foodborne viruses. Int J Food Microbiol 131:83–94

    Article  CAS  Google Scholar 

  • Balaban MO, Ferrentino G (2012) Dense phase carbon dioxide. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Balaban MO, Ferrentino G, Ramírez M, Plaza ML (2008) Review of dense phase carbon dioxide application to citrus juices. 54th annual citrus engineering conference, 2008 March 4, Ben Hill Griffin Jr. Citrus Hall Citrus Research & Education Center Lake Alfred, American Society of Mechanical Engineers, Florida Section, FL

    Google Scholar 

  • Benito A, Ventoura G, Casadei M, Robinson T, Mackey B (1999) Variation in resistance of natural Isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl Environ Microbiol 65(4):1564–1569

    CAS  Google Scholar 

  • Bermúdez-Aguirre D, Wemlinger E, Pedrow P, Barbosa-Cánovas G, García-Pérez M (2013) Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34:149–157

    Article  CAS  Google Scholar 

  • Black EP, Koziol-Dube K, Guan D, Wei J, Setlow B, Cortezzo DE (2005) Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure. Appl Environ Microbiol 71(10):5879–5887

    Article  CAS  Google Scholar 

  • Black EP, Setlow P, Hocking AD, Stewart CM, Kelly AL, Hoover DG (2007) Response of spores to high-pressure processing. Compr Rev Food Sci Food Saf 6(4):103–119

    Article  CAS  Google Scholar 

  • Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F (2006) Bacterial spores inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys 39:3494–3507

    Article  CAS  Google Scholar 

  • Bozoglu F, Alpas H, Kaletunc G (2004) Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol Med Microbiol 40(3):243–247

    Article  CAS  Google Scholar 

  • Brandenburg R, Ehlbeck J, Stieber M, von Woedtke T, Zeymer J, Schlüter O (2007) Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure rf-driven plasma jet. Contrib Plasma Physics 47(1–2):72–79

    Article  CAS  Google Scholar 

  • Brutti A, Rovere P, Cavallero S, D’Amelio S, Danesi P, Arcangeli G (2010) Inactivation of Anisakis simplex larvae in raw fish using high hydrostatic pressure treatments. Food Control 21:331–333

    Article  Google Scholar 

  • Buckow R, Isbarn S, Knorr D, Heinz V, Lehmacher A (2008) Predictive model for inactivation of Feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure. Appl Environ Microbiol 74(4):1030–1038

    Article  CAS  Google Scholar 

  • Buffler CR (1993) Microwave cooking and processing. Van Nostrand Reinhold, New York, NY

    Book  Google Scholar 

  • Bull MK, Hayman MM, Stewart CM, Szabo EA, Knabel SJ (2005) Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. Int J Food Microbiol 101(1):53–61

    Article  Google Scholar 

  • Bull MK, Olivier SA, van Diepenbeek RJ, Kormelink F, Chapman B (2009) Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Appl Environ Microbiol 75(2):434–445

    Article  CAS  Google Scholar 

  • Calix TF, Ferrentino G, Balaban MO (2008) Measurement of high-pressure carbon dioxide solubility in orange juice, apple juice, and model liquid foods. J Food Sci. 73(9):E439–E445

    Article  CAS  Google Scholar 

  • Casadei MA, Manas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68(12):5965–5972

    Article  CAS  Google Scholar 

  • Cedeño-Mattei Y, Reyes M, Perales-Pérez O, Román FR (2013) Size-controlled synthesis of MgO nanoparticles and the assessment of their bactericidal capacity. MRS Online Proc Libr 1547:135–140. https://doi.org/10.1557/opl.2013.638

    Article  CAS  Google Scholar 

  • Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—a review. Food Res Int 52:243–261

    Article  CAS  Google Scholar 

  • Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280. https://doi.org/10.1016/j.tifs.2007.01.007

    Article  CAS  Google Scholar 

  • Chilton P, Isaacs NS, Mackey B, Stenning R (1997) The effects of high hydrostatic pressure on bacteria. In: Heremans K (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven, Belgium, pp 225–228

    Google Scholar 

  • Chipley JR (1980) Effects of microwave irradiation on microorganisms. Adv Appl Microbiol 26:129–145. Academic Press Inc

    Article  CAS  Google Scholar 

  • Collins MV, Flick GJ, Smith SA, Fayer R, Croonenberghs R, O’Keefe S (2005) The effect of high-pressure processing on infectivity of Cryptosporidium parvum oocysts recovered from experimentally exposed Eastern oysters (Crassostrea virginica). J Eukaryot Microbiol 52(6):500–504

    Article  Google Scholar 

  • Comstock K, Farrell D, Godwin C, Xi Y (2004) From hydrocarbons to carbohydrates: food packaging of the future. University of Washington, Program on the environment. http://depts.washington.edu/poeweb/students/gradprograms/envmgt/2004symposium/GreenPackagingReport.pdf

  • Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD (2008) High pressure processing—effects on microbial food safety and food quality. FEMS Microbiol Lett 281(1):1–9

    Article  CAS  Google Scholar 

  • Copson DA (1954) Microwave irradiation of orange juice concentrate for enzyme inactivation. Food Technol 8:397–399

    CAS  Google Scholar 

  • Cutter CN, Sumner SS (2002) Application of edible coatings on muscle foods. In: Gennadios A (ed) Protein-based films and coatings. CRC Press

    Google Scholar 

  • Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann K-D, Jünger M (2010) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Processes Polym 7:224–230

    Article  CAS  Google Scholar 

  • Dagan GF, Balaban MO (2006) Pasteurization of beer by a continuous dense-phase CO2 system. J Food Sci 71(3):E164–E169

    Article  CAS  Google Scholar 

  • Damar S, Balaban MO (2006) Review of dense phase CO2 technology: microbial and enzyme inactivation, and effects on food quality. J Food Sci 71(1):R1–11

    Article  CAS  Google Scholar 

  • Damar S, Balaban MO, Sims CA (2009) Continuous dense-phase CO2 processing of a coconut water beverage. Int J Food Sci Tech 44(4):666–673

    Article  CAS  Google Scholar 

  • Datta AK, Davidson PM (2000) Microwave and radio frequency processing. J Food Sci 65(8):32–41

    Article  Google Scholar 

  • Datta AK, Hu W (1992) Quality optimization of dielectric heating processes. Food Technol 46(12):53–56

    Google Scholar 

  • Decareau RV (1985) Microwaves in the food processing industry. Academic Press, Orlando, FL

    Google Scholar 

  • Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316

    Article  Google Scholar 

  • Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P (2007a) Inactivation of Escherichia coli on almonds using nonthermal plasma. J Food Sci 72(2):M62–M66

    Article  CAS  Google Scholar 

  • Deng XT, Shi JJ, Chen HL, Kong MG (2007b) Protein destruction by atmospheric pressure glow discharges. Appl Phys Lett 90(1):013903

    Article  CAS  Google Scholar 

  • Devlieghere F, Vermeiren L, Debevere J (2004) New preservation technologies: possibilities and limitations. Int Dairy J 14(4):273–285

    Article  Google Scholar 

  • Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020

    Article  CAS  Google Scholar 

  • Farkas DF, Hoover DG (2000) High pressure processing. J Food Sci Suppl 65(s8):47–64. http://www.fda.gov/food/foodscienceresearch/safepracticesforfoodprocesses/ucm101456.htm Updated: 03/16/13

    Article  Google Scholar 

  • Farr D (1990) High pressure technology in the food industry. Trends Food Sci Technol 1:14–16

    Article  Google Scholar 

  • Fernández A, Thompson A (2012) The inactivation of Salmonella by cold atmospheric plasma treatment. Food Res Int 45(2):678–684

    Article  Google Scholar 

  • Ferrentino G, Plaza ML, Ramírez-Rodríguez M, Ferrari G, Balaban MO (2009) Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice. J Food Sci 74(6):E333–E341

    Article  CAS  Google Scholar 

  • Foster JW, Cowan RM, Maag TA (1962) Rupture of bacteria by explosive decomposition. J Bacteriol 83(2):330–334

    CAS  Google Scholar 

  • Fraser D (1951) Bursting bacteria by release of gas pressure. Nature 167:33–34

    Article  CAS  Google Scholar 

  • Fusaro D (1994) Catching the next microwave. Prep Foods 163:33–35

    Google Scholar 

  • Gallagher MK, Vaze N, Gangoli S, Vasilets VN, Gutsol AF, Milovanova TN (2007) Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans Plasma Sci 35(5):1501–1510

    Article  CAS  Google Scholar 

  • Gao Z, Wei L, Yan T, Zhou M (2011) Modification of surface layer of magnesium oxide via partial dissolution and re-growth of crystallites. Appl Surf Sci 257(8):3412–3416. https://doi.org/10.1016/j.apsusc.2010.11.035

    Article  CAS  Google Scholar 

  • Garcia-Graells C, Valckx C, Michiels CW (2000) Inactivation of Escherichia coli and Listeria innocua in milk by combined treatment with high hydrostatic pressure and the lactoperoxidase system. Appl Environ Microbiol 66(10):4173–4179

    Article  CAS  Google Scholar 

  • Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269

    Article  CAS  Google Scholar 

  • Goldblith SA (1966) Basic principles of microwaves and recent developments. Adv Food Res 15:277–301

    Article  CAS  Google Scholar 

  • Goldblith SA, Wang DIC (1967) Effect of microwave on Escherichia coli and Bacillus subtilis. Appl Microbiol 15(6):1371–1375

    CAS  Google Scholar 

  • Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37(2):191–198. https://doi.org/10.1016/j.foodpol.2012.01.001

    Article  Google Scholar 

  • Gunes G, Blum LK, Hotchkiss JH (2005) Inactivation of yeasts in grape juice using a continuous dense phase carbon dioxide processing system. J Sci Food Agric 83(2):2362–2368

    Article  CAS  Google Scholar 

  • Gunes G, Blum LK, Hotchkiss JH (2006) Inactivation of Escherichia coli (ATCC 4157) in diluted apple cider by dense phase carbon dioxide. J Food Prot 69(1):12–16

    Article  Google Scholar 

  • Hamoud-Agha MM, Curet S, Simonin H, Boillereaux L (2013) Microwave inactivation of Escherichia coli K12 CIP 54.117 in a gel medium: experimental and numerical study. J Food Eng 116(2013):315–323

    Article  Google Scholar 

  • Harlfinger L (1992) Microwave sterilization. Food Technol 46(12):57–61

    Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  CAS  Google Scholar 

  • Heddleson RA, Doores S, Anantheswaran RC (1994) Parameters affecting destruction of Salmonella spp. by microwave heating. J Food Sci 59(2):447–451

    Article  Google Scholar 

  • Hendrickx MEG, Knorr D, Loey AV, Heinz V (2005) Ultra high pressure treatment of foods. Kluwer Academic Plenum Publishers, New York, NY, pp 297–309

    Google Scholar 

  • Heremans K (1995) High pressure effects on biomolecules. In: Ledward DA, Johnston DE, Earnshaw RG, Hasting APM (eds) High pressure processing of foods. Nottingham University Press, Nottingham, UK, pp 81–97

    Google Scholar 

  • Hereu A, Dalgaard P, Garriga M, Aymerich T, Bover-Cid S (2012) Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products. Innov Food Sci Emerg Technol 16:305–315

    Article  CAS  Google Scholar 

  • Hite BH (1899) The effects of pressure in the preservation of milk. Morgantown Bull West Virginia Univ Agric Exp Sta 58:15–35

    Google Scholar 

  • Hite BH, Giddings NJ, Weakly CE (1914) The effect of certain microorganisms encountered in the preservation of fruits and vegetables. Morgantown Bull West Univ Virginia Agric Exp Sta 146:3–67

    Google Scholar 

  • Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43:99–107

    Google Scholar 

  • Huang L, Li D-Q, Lin Y-J, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99(5):986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022

    Article  CAS  Google Scholar 

  • Jeppson MR, Harper JC (1967) Microwave heating substances under hydrostatic pressure. Cryodry Corporation, US Patent 3,335,253

    Google Scholar 

  • Kaletunc G, Lee J, Alpas H, Bozoglu F (2004) Evaluation of structural changes induced by high hydrostatic pressure in Leuconostoc mesenteroides. Appl Environ Microbiol 70(2):1116–1122

    Article  CAS  Google Scholar 

  • Keener KM (2008) Atmospheric non-equilibrium plasma. Encyclopedia Agric Food Biol Eng 1(1):1–5

    Article  Google Scholar 

  • Kenyon EM, Westcott DE, LaCasse P, Gould J (1971) A system for continuous processing of food pouches using microwave energy. J Food Sci 36(2):289–293

    Article  CAS  Google Scholar 

  • Kincal D, Hill WS, Balaban MO, Portier KM, Wei CI, Marshall MR (2005) A continuous high pressure carbon dioxide system for microbial reduction in orange juice. J Food Sci 70(5):M249–M254

    Article  CAS  Google Scholar 

  • Kincal D, Hill WS, Balaban M, Portier KM, Sims CA, Wei CI, Marshall MR (2006) A continuous high-pressure carbon dioxide system for cloud and quality retention in orange juice. J Food Sci 71(6):C338–C344

    Article  CAS  Google Scholar 

  • Knutson KM, Marth EH, Wagner MK (1988) Use of microwave oven to pasteurize milk. J Food Prot 51(9):715–719

    Article  Google Scholar 

  • Kozempel MF, Annous BA, Cook RD, Scullen OJ, Whiting RC (1998) Inactivation of microorganisms with microwave at reduced temperatures. J Food Prot 61:582–585

    Article  CAS  Google Scholar 

  • Kozempel MF, Cook RD, Scullen OJ, Whiting RC (2000) Development of a process for detecting non thermal effect of microwave energy on microorganisms at low temperature. J Food Process Preserv 24:287–301

    Article  Google Scholar 

  • Langmuir I (1928) Oscillations in ionized gases. Proc Natl Acad Sci U.S.A. 14:627–637

    Article  CAS  Google Scholar 

  • Laroussi M (2005) Low temperature plasma-based sterilization: overview and state of- the-art. Plasma Processes Polym 2:391–400

    Article  CAS  Google Scholar 

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86

    Article  CAS  Google Scholar 

  • Laroussi M, Mendis DA, Rosenberg M (2003) Plasma interaction with microbes. New J Phys 5:41.1–41.10

    Article  Google Scholar 

  • Leadley CE, Williams A (1997) High-pressure processing of food and drink-an overview of recent developments and future potential. In: New Technologies, Bull No.14 March. CCFRA, Chipping Campden, Glos, UK

    Google Scholar 

  • Lim S, Yagiz Y, Balaban MO (2006) Continuous high pressure carbon dioxide processing of mandarin juice. Food Sci Biotech 15(1):13–18

    CAS  Google Scholar 

  • Lindsay DS, Collins MV, Holliman D, Flick GJ, Dubey JP (2006) Effects of high-pressure processing on Toxoplasma gondii tissue cysts in ground pork. J Parasitol 92(1):195−196

    Article  Google Scholar 

  • Malone AS, Shellhammer TH, Courtney PD (2002) Effects of high pressure on the viability, morphology, lysis, and cell wall hydrolase activity of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 68(9):4357–4363

    Article  CAS  Google Scholar 

  • Malone AS, Chung YK, Yousef AE (2006) Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72(4):2661−2671

    Article  CAS  Google Scholar 

  • Manas P, Mackey BM (2004) Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Appl Environ Microbiol 70(3):1545–1554

    Article  CAS  Google Scholar 

  • Marra F (2012) Microwave and radio-frequency heating processes for food. In: Ahmed J, Shafiur Rahman M (eds) Handbook of food process design. Wiley-Blackwell, Oxford

    Google Scholar 

  • Mendis DA, Rosenberg M, Azam F (2000) A note on the possible electrostatic disruption of bacteria. IEEE Trans Plasma Sci. 28:1304–1306

    Article  Google Scholar 

  • Metaxas R (1996) Foundations of electroheat: a unified approach. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Metaxas R, Meredith RJ (1983) Industrial microwave heating. Peter Peregrinus Ltd., London, UK

    Google Scholar 

  • Min S, Howard-Zhang Q (2007) Packaging for high-pressure processing, irradiation, and pulse electric field processing. Chapter 5. In: Han JH (ed) Packaging for nonthermal processing of food. IFT Press, Blackwell Publishing, UK

    Google Scholar 

  • Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3:159−170

    Article  Google Scholar 

  • Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74:349–358

    Article  CAS  Google Scholar 

  • Molina-Garcia AD, Sanz PD (2002) Anisakis simplex larva killed by high hydrostatic-pressure processing. J Food Prot 65(2):383−388

    Article  Google Scholar 

  • Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28(1):56–63

    Article  Google Scholar 

  • Moreau M, Feuilloley MGJ, Orange N, Brisset J-L (2005) Lethal effect of the gliding arc discharges on Erwinia spp. J Appl Microbiol 98:1039–1046

    Article  CAS  Google Scholar 

  • Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tolls for bio-decontamination. Biotechnol Adv 26:610–617

    Article  CAS  Google Scholar 

  • Mudgett RE, Schwartzberg HG (1982) Microwave food processing: pasteurization and sterilization: a review. AIChe Symp Ser 78(218):1–11

    Google Scholar 

  • Muranyi P, Wunderlich J, Langowski HC (2010) Modification of bacterial structures by a low-temperature gas plasma and influence on packaging material. J Appl Microbiol 109(6):1875–1885

    Article  CAS  Google Scholar 

  • Muredzi P (2012) Emerging non-thermal food processing technologies. CBH Books. http://41.78.77.212:8080/jspui/bitstream/123456789/1000/1/CBH%20Final%20Version%20of%20Emerging%20%20Non-thermal%20book%20for%20MUREDZI.pdf

  • Niemira B (2009) Cold plasma: a novel intervention for fresh fruits and produce. Philadelphia Conference of the Central Atlantic States Assn. of Food and Drug Officials (CASA), Bridgeton, NJ, p 1

    Google Scholar 

  • Niemira BA (2012a) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142

    Article  CAS  Google Scholar 

  • Niemira BA (2012b) Cold plasma: overview of plasma technologies and applications. In: Montville TJ, Matthews KR, Kniel KE (eds) Food microbiology. ASM Press, Washington, DC, p 451

    Google Scholar 

  • Niemira BA (2012c) Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J Food Sci 77(3):171–175

    Article  CAS  Google Scholar 

  • Niemira BA, Sites JE (2008) Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. J Food Prot 71(7):1357–1365

    Article  Google Scholar 

  • Noeckler K, Heinz V, Lemkau K, Knorr D (2001) Inaktivierung von Trichinella spiralis in schweinefleisch durch hochdruckbehandlung. Fleischwirtchaft 81:85–88

    Google Scholar 

  • Ohlsson T (1983) Fundamentals of microwave cooking. Microwave World 4:4–9

    Google Scholar 

  • Olsen CM (1965) Microwaves inhibit bread mold. Food Eng 37(7):51–53

    Google Scholar 

  • Pagan R, Mackey B (2000) Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol 66(7):2829–2834

    Article  CAS  Google Scholar 

  • Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E, Setlow P (2002) Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl Environ Microbiol 68(6):3172–3175

    Article  CAS  Google Scholar 

  • Palou E (1997) Nonthermal preservation of foods. CRC Press, Boca Raton, FL

    Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Swanson BG (1997) Kinetic analysis of Zygosaccharomyces bailii inactivation by high hydrostatic pressure. Lebensmittel-Wissenschaft und-Technologie 30(7):703−708

    Google Scholar 

  • Palou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Davidson PM, Swanson BG (1998) High hydrostatic pressure come-up time and yeast viability. J Food Prot 61:1657–1660

    Article  CAS  Google Scholar 

  • Pankaj SK, Misra NN, Cullen PJ (2013) Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov Food Sci Emerg Technol 19:153–157. https://doi.org/10.1016/j.ifset.2013.03.001

    Article  CAS  Google Scholar 

  • Patterson MF (2005) Microbiology of pressure-treated foods. J Appl Microbiol 98:1400–1409

    Article  CAS  Google Scholar 

  • Plaza ML (2010) Quality improvement of guava puree by dense phase carbon dioxide treatment. PhD Dissertation, University of Florida, Gainesville

    Google Scholar 

  • Plaza ML, Ramírez-Rodríguez MM, Ferrentino G, Balaban MO (2009) Optimization of dense phase carbon dioxide pasteurization of guava puree. In: Proceedings of the IFT annual meeting, Anaheim, CA, 5–10 June

    Google Scholar 

  • Pour-El A, Nelson SO, Peck EE, Tjhio B, Stetson LE (1981) Biological properties of VHF and microwave heated soybeans. J Food Sci 46:880–885. 895

    Article  CAS  Google Scholar 

  • Proctor BE, Goldblith SA (1951) Electromagnetic radiation fundamentals and their applications in food technology. Adv Food Res 3:120–196

    Google Scholar 

  • Ramaswami H, Shao S, Zhue S (2010) High-pressure destruction kinetics of Clostridium sporogenes ATCC 11437 spores in milk at elevated quasi-isothermal conditions. J Food Eng 96(2010):249–257

    Article  Google Scholar 

  • Ramírez-Rodrígues MM, Plaza ML, Ferrentino G, Balaban MO, Reyes-De-Corcuera J, Marshall M (2011) Effect of dense phase carbon dioxide on microbial stability and physicochemical attributes of beverage. J of Food Process Eng 36(1):125–133

    Article  CAS  Google Scholar 

  • Ramírez-Rodrígues MM, Plaza ML, Azeredo A, Balaban MO (2012) Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus Sabdariffa beverage during storage. Food Chem 134:1425–1431

    Article  CAS  Google Scholar 

  • Rendueles E, Omer MK, Alvseike O, Calleja-Alonso R, Capita R, Prieto M (2011) Microbiological food safety assessment of high hydrostatic pressure processing: a review. Food Sci Technol 44:1251–1260

    CAS  Google Scholar 

  • Ritz M, Freulet M, Orange N, Federighi M (2000) Effects of high hydrostatic pressure on membrane proteins of Salmonella typhimurium. Int J Food Microbiol 55:115–119

    Article  CAS  Google Scholar 

  • Ritz M, Tholozan JL, Federighi M, Pilet MF (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl Environ Microbiol 67(5):2240–2247

    Article  CAS  Google Scholar 

  • Ritz M, Tholozan JL, Federighi M, Pilet MF (2002) Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. Int J Food Microbiol 79(1–2):47–53

    Article  CAS  Google Scholar 

  • Robertson GL (2012) Food packaging principles and practices, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Rosenberg U, Bogl W (1987) Microwave pasteurization, sterilization, blanching, and pest control in the food industry. Food Technol 41(6):92–99

    Google Scholar 

  • Ross AIV, Griffiths MW, Mittal GS, Deeth HC (2003) Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol 89(2–3):125–138

    Article  Google Scholar 

  • Rosypal AC, Bowman DD, Holliman D, Flick GJ, Lindsay DS (2007) Effects of high hydrostatic pressure on embryonation of Ascaris suum eggs. Vet Parasitol 145(1–2):86–89

    Article  Google Scholar 

  • Roussy G, Pearce J (1995) Foundations and industrial applications of microwaves and radio frequency fields. Wiley, New York

    Google Scholar 

  • Russell NJ (2002) Bacterial membranes: the effects of chill storage and food processing. An overview. Int J Food Microbiol 79(1–2):27–34

    Article  CAS  Google Scholar 

  • Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA (2005) Nanotechnology and the developing world. PLoS Med 2(5):e97. https://doi.org/10.1371/journal.pmed.0020097

    Article  Google Scholar 

  • Sale AJH (1976) A review of microwaves for food processing. J Food Technol 11:319–329

    Article  Google Scholar 

  • Schiffmann RF (1990) Microwave foods: basic design considerations. Tappi J 73:209–212

    Google Scholar 

  • Schlegel W (1992) Commercial pasteurization and sterilization of food products using microwave technology. Food Technol 46(12):62–63

    Google Scholar 

  • Selvamani T, Sinhamahapatra A, Bhattacharjya D, Mukhopadhyay I (2011) Rectangular MgO microsheets with strong catalytic activity. Mater Chem Phys 129(3):853–861. https://doi.org/10.1016/j.matchemphys.2011.05.055

    Article  CAS  Google Scholar 

  • Sharma A, Pruden A, Yu Z, Collins GJ (2005) Bacterial inactivation in open air by the afterglow plume emitted from a grounded hollow slot electrode. Environ Sci Technol 39(1):339–344

    Article  CAS  Google Scholar 

  • Sharma A, Collins G, Pruden A (2009) Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. J Appl Microbiol 107:1440–1449

    Article  CAS  Google Scholar 

  • Shi L-E, Xing L, Hou B, Ge H, Guo X, Tang Z (2010) Inorganic nano metal oxides used as antimicroorganisms agents for pathogen control. In: Mendez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, vol 1. Formatex, Badajoz, Spain

    Google Scholar 

  • Shigehisa T, Ohmori T, Saito A, Taji S, Hayashi R (1991) Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int J Food Microbiol 12(2–3):207–215

    Article  CAS  Google Scholar 

  • Shimada S, Andou M, Naito N, Yamada N, Osumi M, Hayashi R (1993) Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 40(1):123–131

    Article  CAS  Google Scholar 

  • Shimoda M, Kago H, Kojima N, Miyake M, Osajima Y, Hayakawa I (2002) Accelerated death kinetics of Aspergillus niger spores under high-pressure carbonation. Appl Environ Microbiol 68(8):4162−4167

    Article  CAS  Google Scholar 

  • Siegrist M, Cousin M-E, Kastenholz H, Wiek A (2007) Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. Appetite 49(2):459–466. https://doi.org/10.1016/j.appet.2007.03.002

    Article  Google Scholar 

  • Simpson RK, Gilmour A (1997) The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Lett Appl Microbiol 25(1):48−53

    Article  Google Scholar 

  • Smelt JP (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152−158

    Article  Google Scholar 

  • Soroka W (2009) Fundamentals of packaging technology. Institute of Packaging Professionals, Naperville, IL

    Google Scholar 

  • Spilimbergo S, Bertucco A (2003) Non-thermal bacterial inactivation with dense CO2. Biotechnol Bioeng 84(6):627–638

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686. https://doi.org/10.1021/la0202374

    Article  CAS  Google Scholar 

  • Sumnu G, Sahin S (2005) Recent developments in microwave heating. Emerg Technol Food Process:419. Elsevier Ltd

    Google Scholar 

  • Sunderland JE (1982) An economic study of microwave freeze-drying. Food Technol 36:50–52. 54–56

    Google Scholar 

  • Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12(1):1–6. https://doi.org/10.1023/B:JOOE.0000003121.12800.4e

    Article  CAS  Google Scholar 

  • Tewari G, Juneja VJ (2007) Advances in thermal and non-thermal food preservation. Blackwell Publishing, Ames, IA

    Book  Google Scholar 

  • Tomlins RI, Ordal ZJ (1976) Thermal injury and inactivation in vegetative bacteria. In: Skinner FA, Hugo WB (eds) Inhibition and inactivation of vegetative microbes. Academic Press, London, pp 153–185

    Google Scholar 

  • Vleugels M, Shama G, Deng XT, Greenacre E, Brocklehurst T, Kong MG (2005) Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans Plasma Sci 33(2):824–828

    Article  CAS  Google Scholar 

  • Wouters PC, Glaasker E, Smelt JP (1998) Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl Environ Microbiol 64(2):509–514

    CAS  Google Scholar 

  • Wuytack EY, Boven S, Michiels CW (1998) Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Appl Environ Microbiol 64(9):3220–3224

    CAS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3(7):643–646. https://doi.org/10.1016/S1466-6049(01)00197-0

    Article  CAS  Google Scholar 

  • Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64(2):479–485

    CAS  Google Scholar 

  • Yasushi S, Shin-ichi K, Yukinori Y, Masayuki K (2011) Cold plasma techniques for pharmaceutical and biomedical engineering. In: Laskovski A (ed) Biomedical engineering, trends in materials science. InTech, Rijeka, Croatia

    Google Scholar 

  • Ying J, Chunsheng R, Zhilong X, Dezhen W, Younian W, Hong Y (2006) Comparison of yeast inactivation treated in He, air and N2 DBD plasma. Plasma Sci Technol 8(6):720–723

    Article  Google Scholar 

  • Yordanov DG, Angelova GV (2010) High pressure processing for foods preserving. Biotecnol Biotechnol Equip 24(3):1940–1945

    Article  Google Scholar 

  • Yu H, Xiu ZL, Ren CS, Zhang JL, Wang DZ, Wang YN (2005) Inactivation of yeast by dielectric barrier discharge (DBD) plasma in helium at atmospheric pressure. IEEE Trans Plasma Sci 33(4):1405–1409. 684

    Article  CAS  Google Scholar 

  • Yuste J, Capellas M, Fung DYC, Mor-Mur M (2001) High pressure processing for food safety and preservation: a review. J Rapid Methods Autom Microbiol 9(1):1–10

    Article  Google Scholar 

  • Zimmermann WJ (1983) Evaluation of microwave cooking procedures and ovens for devitalizing trichinae in pork roasts. J Food Sci 48:856–860. 899

    Article  Google Scholar 

  • Zimmermann M, Schaffner DW, Aragão GMF (2013) Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. Food Sci Technol 53(2013):107–112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette E. Orellana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orellana, L.E., de Lourdes Plaza, M., Pérez, F., Cedeño, Y., Perales, O. (2017). Non-thermal Methods for Food Preservation. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_14

Download citation

Publish with us

Policies and ethics