Advertisement

Approximation in the Closed Unit Ball

  • Javad Mashreghi
  • Thomas Ransford
Chapter
Part of the Fields Institute Communications book series (FIC, volume 81)

Abstract

In this expository article, we present a number of classic theorems that serve to identify the closure in the sup-norm of various sets of Blaschke products, inner functions and their quotients, as well as the closure of the convex hulls of these sets. The results presented include theorems of Carathéodory, Fisher, Helson–Sarason, Frostman, Adamjan–Arov–Krein, Douglas–Rudin and Marshall. As an application of some of these ideas, we obtain a simple proof of the Berger–Stampfli spectral mapping theorem for the numerical range of an operator.

Keywords

Approximation Unit ball Blaschke product Inner function Convex hull 

2010 Mathematics Subject Classification.

30J05 30J10 

Notes

Acknowledgements

Javad Mashreghi was supported by a grant from NSERC. Thomas Ransford was supported by grants from NSERC and the Canada research chairs program.

References

  1. 1.
    Adamjan, V.M., Arov, D.Z., Kreı̆n, M.G.: Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems. Funkcional. Anal. i Priložen. 2(4), 1–17 (1968).Google Scholar
  2. 2.
    Adamjan, V.M., Arov, D.Z., Kreı̆n, M.G.: Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz. Funkcional. Anal. i Priložen. 2(1), 1–19 (1968).Google Scholar
  3. 3.
    Adamjan, V.M., Arov, D.Z., Kreı̆n, M.G.: Infinite Hankel block matrices and related problems of extension. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6(2–3), 87–112 (1971).Google Scholar
  4. 4.
    Berger, C.A., Stampfli, J.G.: Mapping theorems for the numerical range. Amer. J. Math. 89, 1047–1055 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Douglas, R.G., Rudin, W.: Approximation by inner functions. Pacific J. Math. 31, 313–320 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Drury, S.W.: Symbolic calculus of operators with unit numerical radius. Linear Algebra Appl. 428(8–9), 2061–2069 (2008). DOI 10.1016/j.laa.2007.11.007. URL http://dx.doi.org.acces.bibl.ulaval.ca/10.1016/j.laa.2007.11.007.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fatou, P.: Sur les fonctions holomorphes et bornées à l’intérieur d’un cercle. Bull. Soc. Math. France 51, 191–202 (1923).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fisher, S.: The convex hull of the finite Blaschke products. Bull. Amer. Math. Soc. 74, 1128–1129 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frostman, O.: Sur les produits de Blaschke. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 12(15), 169–182 (1942).Google Scholar
  10. 10.
    Garnett, J.B.: Bounded analytic functions, Graduate Texts in Mathematics, vol. 236, first edn. Springer, New York (2007).Google Scholar
  11. 11.
    Helson, H., Sarason, D.: Past and future. Math. Scand 21, 5–16 (1968) (1967).Google Scholar
  12. 12.
    Klaja, H., Mashreghi, J., Ransford, T.: On mapping theorems for numerical range. Proc. Amer. Math. Soc. 144(7), 3009–3018 (2016). DOI 10.1090/proc/12955. URL http://dx.doi.org.acces.bibl.ulaval.ca/10.1090/proc/12955.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Koosis, P.: Introduction to H p spaces, Cambridge Tracts in Mathematics, vol. 115, second edn. Cambridge University Press, Cambridge (1998). With two appendices by V. P. Havin [Viktor Petrovich Khavin].Google Scholar
  14. 14.
    Marshall, D.E.: Blaschke products generate H . Bull. Amer. Math. Soc. 82(3), 494–496 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pearcy, C.: An elementary proof of the power inequality for the numerical radius. Michigan Math. J. 13, 289–291 (1966).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de Mathématiques et de StatistiqueUniversité LavalQuébecCanada

Personalised recommendations