Subharmonic Images of a Convergent Sequence

Chapter
Part of the Fields Institute Communications book series (FIC, volume 81)

Abstract

In this paper we characterize the sequences of possible values of a subharmonic function along a convergent sequence of points. We also discuss some related open questions and possible generalizations.

Msc codes:

Subharmonic interpolation 

Keywords

Primary 31B05; Secondary 31A05 

Notes

Acknowledgements

The first author was supported by NSERC (Canada).

References

  1. 1.
    Armitage, D.H., Gardiner, S.J.: Classical potential theory. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2001.Google Scholar
  2. 2.
    Bendixson, I.: Sur une extension à l’infini de la formule d’interpolation de Gauss (French). Acta Mat. 9, 1–34 (1887).Google Scholar
  3. 3.
    Boivin, A., Gauthier, P.M., Manolaki, M.: On zero sets of harmonic and real analytic functions. Ann. Math. Québec (to appear).Google Scholar
  4. 4.
    Boivin, A., Gauthier, P.M., Paramonov, P.V.: Runge- and Walsh-type extensions of smooth subharmonic functions on open Riemann surfaces. (Russian) Mat. Sb. 206 (2015), no. 1, 5–28; translation in Sb. Math. 206 (2015), no. 1–2, 3–23.Google Scholar
  5. 5.
    Gardiner, S.J.: Harmonic approximation. London Mathematical Society Lecture Note Series, 221. Cambridge University Press, Cambridge, 1995.Google Scholar
  6. 6.
    Gauthier, P.M.: Subharmonic extensions and approximations. Canad. Math. Bull. 37 (1994), no. 1, 46–53.Google Scholar
  7. 7.
    Gauthier, P.M.: Complex approximation and extension-interpolation on arbitrary sets in one dimension. Invariant subspaces of the shift operator, 115–129, Contemp. Math., 638, Amer. Math. Soc., Providence, RI, 2015.Google Scholar
  8. 8.
    Peretz, R.: Masters’ Thesis (Hebrew), Technion-Israel Institute of Technology (1983).Google Scholar
  9. 9.
    Rudin, W.: Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de Mathématiques et de StatistiqueUniversité de MontréalMontréalCanada
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA

Personalised recommendations