Families of Universal Taylor Series Depending on a Parameter

  • Evgeny Abakumov
  • Jürgen Müller
  • Vassili Nestoridis
Part of the Fields Institute Communications book series (FIC, volume 81)


We construct families of universal Taylor series on Ω depending on a parameter w ∈ G, where Ω and G are planar simply connected domains. The functions to be approximated depend on the parameter w, w ∈ G. The partial sums implementing the universal approximation are one variable partial sums with respect to z ∈ Ω for each fixed value of the parameter w ∈ G. The universal approximation extends to mixed partial derivatives. This phenomenon is generic in H( Ω × G).


Universal Taylor series Baire’s Theorem Runge’s Theorem Generic property Mixed partial derivatives 

A.M.S. Classification:

Primary 30K05 Secondary 32A30 



The authors are grateful to the referee for a careful reading of the manuscript and for his comments, which helped to improve the presentation considerably. Moreover, the authors thank N. Daras for a helpful communication. The work was supported by the Russian Science Foundation (Grant No. 14-41-00010).


  1. 1.
    F. Bayart, K.-G. Große-Erdmann, V. Nestoridis and C. Papadimitropoulos: Abstract Theory of Universal Series and Applications, Proc. London Math. Soc. 96 (2008), 417–463.Google Scholar
  2. 2.
    C. Chui and M. N. Parnes: Approximation by overconvergence of power series, J. Math. Anal. Appl. 36, (1971), 693–696.Google Scholar
  3. 3.
    W. Gehlen, W. Luh, J. Müller: On the existence of O-universal functions, Complex Variables 41 (2000), 81–90.Google Scholar
  4. 4.
    K.-G. Große-Erdmann: Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), 345–381.Google Scholar
  5. 5.
    R. C. Gunning and H. Rossi: Analytic Functions of several Complex Variables, Prentice-Hall. Series in Modern Analysis, Prentice-Hall, Inc. 1965.Google Scholar
  6. 6.
    E. Hille, Analytic Function Theory, Vol. II, 2nd ed., Chelsea Publishing Company, New York, 1977.Google Scholar
  7. 7.
    J.-P. Kahane: Baire’s Category theorem and trigonometric series, J. Anal. Math. 80 (2000), 143–182.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ch. Karifillis, Ch. Konstadilaki and V. Nestoridis: Smooth universal Taylor series, Monatsh. Math. 147 (2006), 249–257.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    W. Luh: Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren Matrixtransformierten, Mitt. Math. Sem. Giessen (88) 1970, 1–5.Google Scholar
  10. 10.
    W. Luh: Universal approximation properties of overconvergent power series on open sets, Analysis, 6 (1986) 191–207.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Melas and V. Nestoridis: On various types of universal Taylor series, Complex Var. Theory Appl. 44 (2001), 245–258.MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Melas and V. Nestoridis: Universality of Taylor series as a generic property of holomorphic functions, Adv. Math. 157 (2001), 138–176.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Müller, A. Yavrian: On polynomial sequences with restricted growth near infinity, Bull. London Math. Soc. 34 (2002), 189–199.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Müller, V. Vlachou and A. Yavrian: Universal overconvergence and Ostrowski-gaps, Bull. London Math. Soc. 38, (2006), 597–606.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    V. Nestoridis: Universal Taylor series, Ann. Inst. Fourier 46 (1996), 1293–1306.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. Nestoridis: An extension of the notion of universal Taylor series, in: N. Papamichael, S. Ruscheweyh, E. B. Saff (ed.), Proceedings of the 3rd CMFT Conference on Computational Methods and Function Theory, 1997, Nicosia, Cyprus, October 13–17, 1997, World Scientific Ser. Approx. Decompos. II (1999), 421–430.Google Scholar
  17. 17.
    V. Nestoridis: A strong notion of universal Taylor Series, J. London. Math. Soc. (2) 68 (2003), 712–724.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J. Pal: Zwei kleine Bemerkungen, Tohoku Math. J. 6 (1914), 42–43.zbMATHGoogle Scholar
  19. 19.
    T. Ransford: Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.CrossRefzbMATHGoogle Scholar
  20. 20.
    W. Rudin, Real and Complex Analysis, McGraw-Hill, N.Y., 1966.zbMATHGoogle Scholar
  21. 21.
    A. I. Seleznev: On universal power series, Math. Sb. 28 (1951), 453–460.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Evgeny Abakumov
    • 1
    • 2
  • Jürgen Müller
    • 3
  • Vassili Nestoridis
    • 4
  1. 1.LAMA (UMR CNRS 8050)Université Paris-EstMarne-la-ValléeFrance
  2. 2.Department of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.University of TrierFB IV, MathematicsTrierGermany
  4. 4.Department of MathematicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations