Advertisement

The Life and Work of André Boivin

  • Paul Gauthier
  • Myrto Manolaki
  • Javad Mashreghi
Chapter
Part of the Fields Institute Communications book series (FIC, volume 81)

Abstract

André Boivin will be fondly remembered for many reasons. We shall attempt to convey the impact he has had on the authors of this note (and many others) by describing his wonderful personality and his important contributions in the field of Complex Approximation Theory.

2010 Mathematics Subject Classification.

Primary 01A70; Secondary 30E10 30B60 32C16 

References

  1. 1.
    Boivin, André; Gauthier, Paul M.; Manolaki, Myrto: On zero sets of harmonic and real analytic functions. Ann. Math. Québec (to appear).Google Scholar
  2. 2.
    Boivin, André; Gauthier, Paul M.; Paramonov, Petr V.: Runge and Walsh type extensions of smooth subharmonic functions on open Riemann surfaces. Mat. Sb. 206 (2015), no. 1, 5–28.Google Scholar
  3. 3.
    Boivin, André; Zhu, Changzhong: Interpolation and moment in weighted Hardy spaces. Invariant subspaces of the shift operator, 179–195, Contemp. Math., 638, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, 2015.Google Scholar
  4. 4.
    Boivin, André; Zhu, Changzhong: Bi-orthogonal expansions in the space L 2(0, ). Blaschke products and their applications, 99–112, Fields Inst. Commun., 65, Springer, New York, 2013.Google Scholar
  5. 5.
    Boivin, André; Gauthier, Paul M.; Paramonov, Petr V.: C m-subharmonic extension of Runge type from closed to open subsets of \(\mathbb {R}^N\). Proc. Steklov Inst. Math. 279 (2012), no. 1, 207–214.Google Scholar
  6. 6.
    Askaripour, Nadya; Boivin, André: Meromorphic approximation on noncompact Riemann surfaces. Complex analysis and potential theory, 171–192, CRM Proc. Lecture Notes, 55, Amer. Math. Soc., Providence, RI, 2012.Google Scholar
  7. 7.
    Boivin, André; Zhu, Changzhong: Completeness of the system {f(λ n z)} in \(L^2_a[\varOmega ]\). Hilbert spaces of analytic functions, 173–196, CRM Proc. Lecture Notes, 51, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
  8. 8.
    Boivin, André; Zhu, Changzhong: Approximation in weighted Hardy spaces for the unit disc. Hilbert spaces of analytic functions, 65–80, CRM Proc. Lecture Notes, 51, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
  9. 9.
    Boivin, André; Gauthier, Paul M.; Zhu, Changzhong: Weighted Hardy spaces for the unit disc: approximation properties. Complex and harmonic analysis, 129–155, DEStech Publ., Inc., Lancaster, PA, 2007.Google Scholar
  10. 10.
    Boivin, André; Jiang, Baoguo: Bounded pointwise approximation on open Riemann surfaces. Analysis (Munich) 27 (2007), no. 2–3, 213–225.Google Scholar
  11. 11.
    Boivin, André; Zhong, Hualiang: Completeness of systems of complex exponentials and the Lambert W functions. Trans. Amer. Math. Soc. 359 (2007), no. 4, 1829–1849.Google Scholar
  12. 12.
    Boivin, André; Zhong, Hualiang: Peters, Terry M.: Explicit bounds of complex exponential frames. J. Inequal. Appl. 2006, Art. ID 38173, 12 pp.Google Scholar
  13. 13.
    Boivin, André; Gauthier, Paul M.; Schmieder Gerald: Simultaneous approximation on two subsets of an open Riemann surface. J. Approx. Theory 138 (2006), no. 2, 151–167.Google Scholar
  14. 14.
    Boivin, André; Zhong, Hualiang: On a class of non-harmonic Fourier series. Houston J. Math. 31 (2005), no. 3, 937–956.Google Scholar
  15. 15.
    Boivin, André; Jiang, Baoguo: Uniform approximation by meromorphic functions on Riemann surfaces. J. Anal. Math. 93 (2004), 199–214.Google Scholar
  16. 16.
    Boivin, André; Gauthier, Paul. M.; Paramonov, Petr V.: On uniform approximation by n-analytic functions on closed sets in \(\mathbb {C}\). Izv. Math. 68 (2004), no. 3, 447–459.Google Scholar
  17. 17.
    Boivin, André; Zhu, Changzhong: The growth of an entire function and its Dirichlet coefficients and exponents. Complex Var. Theory Appl. 48 (2003), no. 5, 397–415.Google Scholar
  18. 18.
    Boivin, André; Zhu, Changzhong: On the completeness of the system \(\{z^{\tau _n}\}\) in L 2. J. Approx. Theory 118 (2002), no. 1, 1–19.Google Scholar
  19. 19.
    Boivin, André; Gauthier, Paul M.; Paramonov, Petr V.: Approximation on closed sets by analytic or meromorphic solutions of elliptic equations and applications. Canad. J. Math. 54 (2002), no. 5, 945–969.Google Scholar
  20. 20.
    Boivin, André; Zhu, Changzhong: On the L 2-completeness of some systems of analytic functions. Complex Variables Theory Appl. 45 (2001), no. 3, 273–295.Google Scholar
  21. 21.
    Boivin, André; Gauthier, Paul M.: Holomorphic and harmonic approximation on Riemann surfaces. Approximation, complex analysis, and potential theory (Montreal, QC, 2000), 107–128, NATO Sci. Ser. II Math. Phys. Chem., 37, Kluwer Acad. Publ., Dordrecht, 2001.Google Scholar
  22. 22.
    Boivin, André; Paramonov, Petr V.: On radial limit functions for entire solutions of second order elliptic equations in \(\mathbb {R}^2\). Publ. Mat. 42 (1998), no. 2, 509–519.Google Scholar
  23. 23.
    Boivin, André; Paramonov, Petr V.: Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Sb. Math. 189 (1998), no. 3–4, 481–502.Google Scholar
  24. 24.
    Boivin, André; Dwilewicz, Roman: Extension and approximation of CR functions on tube manifolds. Trans. Amer. Math. Soc. 350 (1998), no. 5, 1945–1956.Google Scholar
  25. 25.
    Boivin, André; Nersessian, Ashot H.: An example in tangential meromorphic approximation. J. Approx. Theory 87 (1996), no. 1, 103–111.Google Scholar
  26. 26.
    Boivin, André; Bonilla, Antonio; Fariña, Juan C.: Meromorphic approximation in weighted L p spaces. Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 1, 47–64.Google Scholar
  27. 27.
    Boivin, André; Dwilewicz, Roman: CR mappings of circular CR manifolds. Canad. Math. Bull. 38 (1995), no. 4, 396–407.Google Scholar
  28. 28.
    Boivin, André; Gauthier, Paul M.: Tangential and uniform approximation. Linear and Complex Analysis Problem Book 3, Part II. Springer-Verlag Lecture Notes in Mathematics, 1574 (1994), 96–100.Google Scholar
  29. 29.
    Boivin, André; Mateu, Joan; Verdera, Joan: Weighted L p approximation by holomorphic functions. Approximation by solutions of partial differential equations (Hanstholm, 1991), 27–49, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992.Google Scholar
  30. 30.
    Boivin, André; Dwilewicz, Roman: Holomorphic approximation of CR functions on tubular submanifolds of C 2. Proceedings of the Tenth Conference on Analytic Functions (Szczyrk, 1990). Ann. Polon. Math. 55 (1991), 11–18.Google Scholar
  31. 31.
    Boivin, André; Verdera, Joan: Approximation par fonctions holomorphes dans les espaces L p, Lipα and BMO spaces. Indiana Univ. Math. J. 40 (1991), no. 2, 393–418.Google Scholar
  32. 32.
    Boivin, André: A remark on the approximation property and tensor approximation on complex manifolds. Complex analysis and applications ‘87 (Varna, 1987), 28–31, Publ. House Bulgar. Acad. Sci., Sofia, 1989.Google Scholar
  33. 33.
    Boivin, André: T-invariant algebras on Riemann surfaces II. Constructive Function Theory-86 Conference (Edmonton, AB, 1986). Rocky Mountain J. Math. 19 (1989), no. 1, 83–92.Google Scholar
  34. 34.
    Boivin, André: T-invariant algebras on Riemann surfaces. Mathematika 34 (1987), no. 2, 160–171.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Boivin, André; Gauthier, Paul M.; Hengartner, Walter: Approximation uniforme par des fonctions harmoniques avec singularités. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 31(79) (1987), no. 1, 3–8.Google Scholar
  36. 36.
    Boivin, André: Carleman approximation on Riemann surfaces. Math. Ann. 275 (1986), no. 1, 57–70.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Boivin, André; Gauthier, Paul M.: Approximation harmonique sur les surfaces de Riemann. Canad. J. Math. 36 (1984), no. 1, 1–8.Google Scholar
  38. 38.
    Boivin, André; Gauthier, Paul M.: Tangential approximation. Linear and Complex Analysis Problem Book, Springer-Verlag Lecture Notes, 1043 (1984), 453–456.Google Scholar
  39. 39.
    Boivin, André: Approximation uniforme harmonique et tangentielle holomorphe ou méromorphe sur les surfaces de Riemann. Doctoral Thesis, Université de Montréal, 1984. pp.87.Google Scholar
  40. 40.
    Boivin, André: On Carleman approximation by meromorphic functions. Analytic functions, Blazejewko 1982 (Blazejewko, 1982), 9–15, Lecture Notes in Math., 1039, Springer, Berlin, 1983.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Paul Gauthier
    • 1
  • Myrto Manolaki
    • 2
  • Javad Mashreghi
    • 3
  1. 1.Département de Mathématiques et de StatistiqueUniversité de MontréalMontréalCanada
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA
  3. 3.Département de Mathématiques et de StatistiqueUniversité LavalQuébecCanada

Personalised recommendations