Skip to main content

Defining the Phenotype and Function of Mammalian Spermatogonial Stem Cells

  • Chapter
  • First Online:
The Biology of Mammalian Spermatogonia

Abstract

Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia that maintain spermatogenesis throughout adult life and are essential for male fertility. At each cell division, an SSC produces daughter cells that will either self-renew to produce more SSCs or initiate differentiation to ultimately produce spermatozoa. Consequently, fertility throughout the mammalian male lifespan depends on formation of a foundational SSC pool and then balanced SSC self-renewal and differentiation once steady-state spermatogenesis is achieved. Fundamental studies of SSCs, however, are complicated by their extraordinary rarity in the adult testis (0.01%) and lack of definitive molecular markers that have allowed their prospective identification at any stage of testis development in any species. Despite these challenges, powerful experimental strategies such as transplantation and lineage tracing, which provide retrospective stem cell assessments, have revealed considerable phenotypic information about SSCs over the past two decades. This chapter provides an overview of the key phenotypic and functional characteristics of SSCs, the relative value of differing assessment methods, and the best-substantiated markers of SSCs. Particular emphasis will be placed on emerging technologies, such as single-cell molecular profiling and the use of ID4 reporters, which are facilitating the first prospective, comprehensive molecular characterizations of SSCs that will transform our understanding of the underlying regulatory framework controlling their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VA, Tao S, Lei N et al (2013) A Wt1-Dmrt1 transgene restores DMRT1 to sertoli cells of Dmrt1(−/−) testes: a novel model of DMRT1-deficient germ cells. Biol Reprod 88:51

    Article  PubMed  CAS  Google Scholar 

  • Aloisio GM, Nakada Y, Saatcioglu HD et al (2014) PAX7 expression defines germline stem cells in the adult testis. J Clin Invest 124:3929–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avarbock MR, Brinster CJ, Brinster RL (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 2:693–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballow D, Meistrich ML, Matzuk M et al (2006) Sohlh1 is essential for spermatogonial differentiation. Dev Biol 294:161–167

    Article  CAS  PubMed  Google Scholar 

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A 91:11303–11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91:11298–11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster CJ, Ryu BY, Avarbock MR et al (2003) Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol Reprod 69:412–420

    Article  CAS  PubMed  Google Scholar 

  • Buaas FW, Kirsh AL, Sharma M et al (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652

    Article  CAS  PubMed  Google Scholar 

  • Buageaw A, Sukhwani M, Ben-Yehudah A et al (2005) GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod 73:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Buaas FW, Sharma M et al (2014) LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion. Stem Cells 32:860–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan F, Oatley MJ, Kaucher AV et al (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28:1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouthier DE, Avarbock MR, Maika SD et al (1996) Rat spermatogenesis in mouse testis. Nature 381:418–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costoya JA, Hobbs RM, Barna M et al (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659

    Article  CAS  PubMed  Google Scholar 

  • de Rooij DG, Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. J Androl 21:776–798

    PubMed  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (1999a) Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 61:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Dobrinski I, Ogawa T, Avarbock MR et al (1999b) Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Mol Reprod Dev 53:142–148

    Article  CAS  PubMed  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (2000) Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev 57:270–279

    Article  CAS  PubMed  Google Scholar 

  • Dovey SL, Valli H, Hermann BP et al (2013) Eliminating malignant potential from therapeutic human spermatogonial stem cells. J Clin Invest 123:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebata KT, Zhang X, Nagano MC (2005) Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol Reprod Dev 72:171–181

    Article  CAS  PubMed  Google Scholar 

  • Falciatori I, Borsellino G, Haliassos N et al (2004) Identification and enrichment of spermatogonial stem cells displaying side-population phenotype in immature mouse testis. FASEB J 18:376–378

    CAS  PubMed  Google Scholar 

  • Falender AE, Freiman RN, Geles KG et al (2005) Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev 19:794–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Ohta H, Tsujimura A et al (2005) Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Investig 115:1855–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassei K, Orwig KE (2013) SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One 8:e53976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassei K, Ehmcke J, Dhir R et al (2010) Magnetic activated cell sorting allows isolation of spermatogonia from adult primate testes and reveals distinct GFRa1-positive subpopulations in men. J Med Primatol 39:83–91

    Article  CAS  PubMed  Google Scholar 

  • Goertz MJ, Wu Z, Gallardo TD et al (2011) Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest 121:3456–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenbaum MP, Yan W, MH W et al (2006) TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci U S A 103:4982–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisanti L, Falciatori I, Grasso M et al (2009) Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 27:3043–3052

    CAS  PubMed  Google Scholar 

  • Hammoud SS, Low DH, Yi C et al (2014) Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15:239–253

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Low DH, Yi C et al (2015) Transcription and imprinting dynamics in developing postnatal male germline stem cells. Genes Dev 29:2312–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamra FK, Chapman KM, Nguyen DM et al (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. PNAS 102:17430–17435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara K, Nakagawa T, Enomoto H et al (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14:658–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Kokkinaki M, Jiang J et al (2012) Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods Mol Biol 825:45–57

    Article  CAS  PubMed  Google Scholar 

  • Helsel AR, Yang QE, Oatley MJ et al (2017) ID4 levels dictate the stem cell state in mouse spermatogonia. Development 144:624–634

    Article  CAS  PubMed  Google Scholar 

  • Hermann BP, Sukhwani M, Lin CC et al (2007) Characterization, cryopreservation and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25:2330–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Simorangkir DR et al (2009) Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod 24:1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Hansel MC, Orwig KE (2010) Spermatogonial stem cells in higher primates: are there differences to those in rodents? Reproduction 139:479–493

    Article  CAS  PubMed  Google Scholar 

  • Hermann BP, Sukhwani M, Winkler F et al (2012) Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Mutoji KN, Velte EK et al (2015) Transcriptional and translational heterogeneity among neonatal mouse spermatogonia. Biol Reprod 92:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrid M, Vignarajan S, Davey R et al (2006) Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132:617–624

    Article  CAS  PubMed  Google Scholar 

  • Hilscher B, Hilscher W, Bulthoff-Ohnolz B et al (1974) Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res 154:443–470

    Article  CAS  PubMed  Google Scholar 

  • Hobbs RM, Fagoonee S, Papa A et al (2012) Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10:284–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honaramooz A, Megee SO, Dobrinski I (2002) Germ cell transplantation in pigs. Biol Reprod 66:21–28

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Blash S et al (2003a) Germ cell transplantation in goats. Mol Reprod Dev 64:422–428

    Article  CAS  PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Megee SO et al (2003b) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69:1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Hu YC, de Rooij DG, Page DC (2013a) Tumor suppressor gene Rb is required for self-renewal of spermatogonial stem cells in mice. Proc Natl Acad Sci U S A 110:12685–12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YC, de Rooij DG, Page DC (2013b) Tumor suppressor gene Rb is required for self-renewal of spermatogonial stem cells in mice. Proc Natl Acad Sci U S A 110:12685–12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckins C (1971) The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 169:533–557

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Den OK, Stout TA et al (2003) Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126:765–774

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Wong J, Maki C et al (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26:1296–1306

    Article  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K et al (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 70:70–75

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Iwano T et al (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132:4155–4163

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Miki H et al (2006) Clonal origin of germ cell colonies after spermatogonial transplantation in mice. Biol Reprod 75:68–74

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Takashima S, Ishii K et al (2011) Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One 6:e23663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Morimoto H, Shinohara T (2012) Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression. Biol Reprod 87:139

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Onoyama I, Nakayama KI et al (2014a) Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A 111:8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatsu-Shinohara M, Onoyama I, Nakayama KI et al (2014b) Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci U S A 111:8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaucher AV, Oatley MJ, Oatley JM (2012) NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 86:164-1–164-11

    Article  CAS  Google Scholar 

  • Kim Y, Turner D, Nelson J et al (2008) Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 136:823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluin PM, de Rooij DG (1981) A comparison between the morphology and cell kinetics of gonocytes and adult type undifferentiated spermatogonia in the mouse. Int J Androl 4:475–493

    Article  CAS  PubMed  Google Scholar 

  • Komai Y, Tanaka T, Tokuyama Y et al (2014) Bmi1 expression in long-term germ stem cells. Sci Rep 4:6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotzur T, Benavides-Garcia R, Mecklenburg JM et al (2016) Granulocyte colony-stimulating factor (G-CSF) promotes spermatogenic regeneration from surviving spermatogonia after high-dose alkylating chemotherapy. Reprod Biol Endocrinol 15:7. https://doi.org/10.1186/s12958-016-0226-1

    Article  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100:6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004a) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 101:16489–16494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004b) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod 71:722–731

    Article  CAS  PubMed  Google Scholar 

  • Kusz KM, Tomczyk L, Sajek M et al (2009) The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Mol Hum Reprod 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Lassalle B, Bastos H, Louis JP et al (2004) ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131:479–487

    Article  CAS  PubMed  Google Scholar 

  • Lo KC, Brugh VM III, Parker M et al (2005) Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye. Biol Reprod 72:767–771

    Article  CAS  PubMed  Google Scholar 

  • Lovasco LA, Gustafson EA, Seymour KA et al (2015a) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovasco LA, Gustafson EA, Seymour KA et al (2015b) TAF4b is required for mouse spermatogonial stem cell development. Stem Cells 33:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki CB, Pacchiarotti J, Ramos T et al (2009) Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes. Hum Reprod 24:1480–1491

    Article  CAS  PubMed  Google Scholar 

  • Margolin G, Khil PP, Kim J et al (2014) Integrated transcriptome analysis of mouse spermatogenesis. BMC Genomics 15:39

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarrey JR (2013) Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol Reprod 89:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    Article  CAS  PubMed  Google Scholar 

  • Mecklenburg JM, Hermann BP (2016) Mechanisms regulating spermatogonial differentiation. Results Probl Cell Differ 58:253–287

    Article  PubMed  Google Scholar 

  • Meng X, Lindahl M, Hyvonen ME et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Morimoto H, Kanatsu-Shinohara M, Takashima S et al (2009) Phenotypic plasticity of mouse spermatogonial stem cells. PLoS One 4:e7909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutoji K, Singh A, Nguyen T et al (2016) TSPAN8 expression distinguishes spermatogonial stem cells in the prepubertal mouse testis. Biol Reprod 95:117

    Article  PubMed  CAS  Google Scholar 

  • Nagano MC (2003) Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 69:701–707

    Article  CAS  PubMed  Google Scholar 

  • Nagano M, Avarbock MR, Brinster RL (1999) Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod 60:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M, McCarrey JR, Brinster RL (2001) Primate spermatogonial stem cells colonize mouse testes. Biol Reprod 64:1409–1416

    Article  CAS  PubMed  Google Scholar 

  • Nagano M, Patrizio P, Brinster RL (2002) Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril 78:1225–1233

    Article  PubMed  Google Scholar 

  • Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206

    Article  CAS  PubMed  Google Scholar 

  • Naughton CK, Jain S, Strickland AM et al (2006) Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74:314–321

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99:507–516

    Article  CAS  PubMed  Google Scholar 

  • Oakberg EF (1971) Spermatogonial stem-cell renewal in the mouse. Anat Rec 169:515–531

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2006) Spermatogonial stem cells. Methods Enzymol 419:259–282

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2008) Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24:263–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, de Avila DM, McLean DJ et al (2002) Transplantation of bovine germinal cells into mouse testes. J Anim Sci 80:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Avarbock MR, Telaranta AI et al (2006) Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A 103:9524–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Avarbock MR, Brinster RL (2007) Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 282:25842–25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Oatley MJ, Avarbock MR et al (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136:1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Kaucher AV, Avarbock MR et al (2010) Regulation of mouse spermatogonial stem cell differentiation by STAT3 signaling. Biol Reprod 83:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley MJ, Kaucher AV, Racicot KE et al (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Dobrinski I, Avarbock MR et al (1999a) Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol Reprod 60:515–521

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Dobrinski I, Brinster RL (1999b) Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell 31:461–472

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Ohmura M, Yumura Y et al (2003) Expansion of murine spermatogonial stem cells through serial transplantation. Biol Reprod 68:316–322

    Article  CAS  PubMed  Google Scholar 

  • Ohbo K, Yoshida S, Ohmura M et al (2003) Identification and characterization of stem cells in prepubertal spermatogenesis in mice small star, filled. Dev Biol 258:209–225

    Article  CAS  PubMed  Google Scholar 

  • Orwig KE, Ryu BY, Avarbock MR et al (2002a) Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proc Natl Acad Sci U S A 99:11706–11711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orwig KE, Shinohara T, Avarbock MR et al (2002b) Functional analysis of stem cells in the adult rat testis. Biol Reprod 66:944–949

    Article  CAS  PubMed  Google Scholar 

  • Parker N, Falk H, Singh D et al (2014) Responses to glial cell line-derived neurotrophic factor change in mice as spermatogonial stem cells form progenitor spermatogonia which replicate and give rise to more differentiated progeny. Biol Reprod 91:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond Ser B Biol Sci 365:1663–1678

    Article  CAS  Google Scholar 

  • Raverot G, Weiss J, Park SY et al (2005) Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283:215–225

    Article  CAS  PubMed  Google Scholar 

  • Reding SC, Stepnoski AL, Cloninger EW et al (2010) THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139:893–903

    Article  CAS  PubMed  Google Scholar 

  • Ryu BY, Orwig KE, Kubota H et al (2004) Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev Biol 274:158–170

    Article  CAS  PubMed  Google Scholar 

  • Ryu BY, Kubota H, Avarbock MR et al (2005) Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A 102:14302–14307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs C, Robinson BD, Andres ML et al (2014) Evaluation of candidate spermatogonial markers ID4 and GPR125 in testes of adult human cadaveric organ donors. Andrology 2:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sada A, Suzuki A, Suzuki H et al (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325:1394–1398

    Article  CAS  PubMed  Google Scholar 

  • Schlesser HN, Simon L, Hofmann MC et al (2008) Effects of ETV5 (ets variant gene 5) on testis and body growth, time course of spermatogonial stem cell loss, and fertility in mice. Biol Reprod 78:483–489

    Article  CAS  PubMed  Google Scholar 

  • Seandel M, James D, Shmelkov SV et al (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty G, Uthamanthil RK, Zhou W et al (2013) Hormone suppression with GnRH antagonist promotes spermatogenic recovery from transplanted spermatogonial stem cells in irradiated cynomolgus monkeys. Andrology 1:886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shima JE, McLean DJ, McCarrey JR et al (2004) The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod 71:319–330

    Article  CAS  PubMed  Google Scholar 

  • Shinoda G, de Soysa TY, Seligson MT et al (2013) Lin28a regulates germ cell pool size and fertility. Stem Cells 31:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Avarbock MR, Brinster RL (1999) β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 96:5504–5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Avarbock MR, Brinster RL (2000a) Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Dev Biol 220:401–411

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Orwig KE, Avarbock MR et al (2000b) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A 97:8346–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara T, Orwig KE, Avarbock MR et al (2001) Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A 98:6186–6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieburg HB, Cho RH, Muller-Sieburg CE (2002) Limiting dilution analysis for estimating the frequency of hematopoietic stem cells: uncertainty and significance. Exp Hematol 30:1436–1443

    Article  PubMed  Google Scholar 

  • Singh D, Paduch DA, Schlegel PN et al (2017) The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes. Hum Reprod 32:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Song HW, Bettegowda A, Lake BB et al (2016) The homeobox transcription factor RHOX10 drives mouse spermatogonial stem cell establishment. Cell Rep 17:149–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Xu Q, Zhao D et al (2015) Id4 marks spermatogonial stem cells in the mouse testis. Sci Rep 5:17594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Ahn HW, Chu T et al (2012) SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361:301–312

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Kanatsu-Shinohara M, Tanaka T et al (2011) Rac mediates mouse spermatogonial stem cell homing to germline niches by regulating transmigration through the blood-testis barrier. Cell Stem Cell 9:463–475

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kanatsu-Shinohara M, Shinohara T (2015) The CDKN1B-RB1-E2F1 pathway protects mouse spermatogonial stem cells from genomic damage. J Reprod Dev 61:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegelenbosch RAJ, de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290:193–200

    Article  CAS  PubMed  Google Scholar 

  • Tokuda M, Kadokawa Y, Kurahashi H et al (2007) CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod 76:130–141

    Article  CAS  PubMed  Google Scholar 

  • Valli H, Phillips BT, Orwig KE, Gassei K, Nagano MC (2015) Spermatogonial stem cells and spermatogenesis. In: Plant TM, Zeleznik AJ (eds) Knobil and Neill’s physiology of reproduction, 4th edn. Academic Press, Waltham, MA, pp 595–635

    Chapter  Google Scholar 

  • van Bragt MP, Roepers-Gajadien HL, Korver CM et al (2008) Expression of the pluripotency marker UTF1 is restricted to a subpopulation of early A spermatogonia in rat testis. Reproduction 136:33–40

    Article  PubMed  CAS  Google Scholar 

  • von Kopylow K, Staege H, Spiess AN et al (2012) Differential marker protein expression specifies rarefaction zone-containing human Adark spermatogonia. Reproduction 143:45–57

    Article  CAS  Google Scholar 

  • Wang PJ, McCarrey JR, Yang F et al (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Oatley JM, Oatley MJ et al (2010) The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod 82:1103–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AR, Neff NF, Kalisky T et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46

    Article  CAS  PubMed  Google Scholar 

  • Yang QE, Oatley JM (2014) Spermatogonial stem cell functions in physiological and pathological conditions. Curr Top Dev Biol 107:235–267

    Article  CAS  PubMed  Google Scholar 

  • Yang QE, Gwost I, Oatley MJ et al (2013a) Retinoblastoma protein (RB1) controls fate determination in stem cells and progenitors of the mouse male germline. Biol Reprod 89:113

    PubMed  PubMed Central  Google Scholar 

  • Yang QE, Racicot KE, Kaucher AV et al (2013b) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140:280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Takakura A, Ohbo K et al (2004) Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269:447–458

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nakagawa T et al (2006) The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133:1495–1505

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Nabeshima Y, Nakagawa T (2007a) Stem cell heterogeneity: actual and potential stem cell compartments in mouse spermatogenesis. Ann N Y Acad Sci 1120:47–58

    Article  PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007b) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ebata KT, Nagano MC (2003) Genetic analysis of the clonal origin of regenerating mouse spermatogenesis following transplantation. Biol Reprod 69:1872–1878

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Wu X, Kaestner KH et al (2009) The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The Hermann lab is supported by NIH grants K99/R00 HD062687, R21 HD078916, R01 HD90007, P30 GM092334 (PI: John McCarrey), NSF grant DBI-1337513, the Max and Minnie Tomerlin Voelcker Fund, the Helen Freeborn Kerr Foundation, and the University of Texas at San Antonio. We also gratefully acknowledge ongoing assistance of our work by the UTSA Computational System Biology Core, Genomics Core and Immune Defense Core (NIH G12 MD007591), the University of Texas Health Science Center at San Antonio (UTHSCSA) Flow Cytometry Shared Resource Facility (supported by NIH P30 CA054174 and UL1 RR025767), and the Southwest National Primate Research Center (NIH P51 OD011133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Hermann Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mutoji, K.N., Hermann, B.P. (2017). Defining the Phenotype and Function of Mammalian Spermatogonial Stem Cells. In: Oatley, J., Griswold, M. (eds) The Biology of Mammalian Spermatogonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7505-1_4

Download citation

Publish with us

Policies and ethics