Advertisement

Khovanskii Bases of Cox–Nagata Rings and Tropical Geometry

  • Martha Bernal Guillén
  • Daniel Corey
  • Maria Donten-BuryEmail author
  • Naoki Fujita
  • Georg Merz
Chapter
Part of the Fields Institute Communications book series (FIC, volume 80)

Abstract

The Cox ring of a del Pezzo surface of degree 3 has a distinguished set of 27 minimal generators. We investigate conditions under which the initial forms of these generators generate the initial algebra of this Cox ring. Sturmfels and Xu provide a classification in the case of degree 4 del Pezzo surfaces by subdividing the tropical Grassmannian \(\mathop{\mathrm{TGr}}\nolimits (2, \mathbb{Q}^{5})\). After providing the necessary background on Cox–Nagata rings and Khovanskii bases, we review the classification obtained by Sturmfels and Xu. We then describe our classification problem in the degree 3 case and its connections to tropical geometry. In particular, we show that two natural candidates, \(\mathop{\mathrm{TGr}}\nolimits (3, \mathbb{Q}^{6})\) and the Naruki fan, are insufficient to carry out the classification.

MSC 2010 codes:

14Q10 14T05 14D06 

Notes

Acknowledgements

This article was initiated during the Apprenticeship Weeks (22 August–2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry Semester at the Fields Institute. The authors are very grateful to Bernd Sturmfels for suggesting the problem, discussions and encouragement. Daniel Corey was supported by NSF CAREER DMS-1149054. Maria Donten-Bury was supported by a Polish National Science Center project 2013/11/D/ST1/02580. Naoki Fujita was supported by Grant-in-Aid for JSPS Fellows (No. 16J00420).

References

  1. 1.
    Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface: Cox rings, Cambridge Studies in Advanced Mathematics 144, Cambridge University Press, Cambridge, 2015.Google Scholar
  2. 2.
    Victor Batyrev and Oleg Popov: The Cox ring of a del Pezzo surface, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 85–103, Prog. Math. 226, Birkhäuser Boston, Boston, MA, 2004.Google Scholar
  3. 3.
    Arkady Berenstein and Andrei Zelevinsky: Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001) 77–128.Google Scholar
  4. 4.
    Lara Bossinger, Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi: Computing toric degenerations of flag varieties, in Combinatorial Algebraic Geometry, 247–281, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  5. 5.
    William Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton, NJ, 1993.Google Scholar
  6. 6.
    Anders N. Jensen: Gfan, a software system for Gröbner fans and tropical varieties, available at home.imf.au.dk/jensen/software/gfan/gfan.html.
  7. 7.
    Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2.
  8. 8.
    Walter Gubler: A guide to tropicalizations, in Algebraic and combinatorial aspects of tropical geometry, 125–189, Contemp. Math. 589, American Mathematical Society, Providence, RI, 2013.Google Scholar
  9. 9.
    Paul Hacking, Sean Keel, and Jenia Tevelev: Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math. 178 (2009) 173–227.Google Scholar
  10. 10.
    Robin Hartshorne: Algebraic geometry, Graduate Texts in Mathematics 52, Springer, NY, 1977.Google Scholar
  11. 11.
    Olga Holtz and Amos Ron: Zonotopal algebra, Adv. Math. 227 (2011) 847–894.Google Scholar
  12. 12.
    Kiumars Kaveh and Askold Khovanskii: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012) 925–978.Google Scholar
  13. 13.
    Kiumars Kaveh and Christopher Manon: Khovanskii bases, Newton–Okounkov polytopes and tropical geometry of projective varieties, arXiv:1610.00298 [math.AG]Google Scholar
  14. 14.
    Sean Keel and Jenia Tevelev: Geometry of Chow quotients of Grassmannians, Duke Math. J. 134 (2006) 259–311.Google Scholar
  15. 15.
    Robert Lazarsfeld and Mircea Mustata: Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009) 783–835.Google Scholar
  16. 16.
    Diane Maclagan and Bernd Sturmfels: Introduction to Tropical Geometry, Graduate Studies in Mathematics 161, American Mathematical Society, RI, 2015.Google Scholar
  17. 17.
    Shigeru Mukai: Counterexample to Hilbert’s fourteenth problem for the 3-dimensional additive group, RIMS preprint no. 1343, Kyoto, 2001, available at www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1343.pdf.
  18. 18.
    Masayoshi Nagata: On the fourteenth problem of Hilbert, Proc. Int’l Cong. Math. 1958, 459–462, Cambridge University Press, New York, 1960.Google Scholar
  19. 19.
    Isao Naruki: Cross ratio variety as a moduli space of cubic surface, Proc. London Math. Soc. (3) 45 (1982) 1–30.Google Scholar
  20. 20.
    John Christian Ottem: Cox rings of projective varieties, MSc Thesis at the University of Oslo, 2009, available at urn.nb.no/URN:NBN:no-23198.
  21. 21.
    Lorenzo Robbiano and Moss Sweedler: Subalgebra bases, in Commutative algebra (Salvador, 1988), 61–87, Lecture Notes in Math. 1430, Springer, Berlin, 1990.Google Scholar
  22. 22.
    Qingchun Ren, Steven V. Sam, and Bernd Sturmfels: Tropicalization of classical moduli spaces, Math. Comput. Sci. 8 (2014) 119–145.Google Scholar
  23. 23.
    Qingchun Ren, Kristin Shaw, and Bernd Sturmfels: Tropicalization of del Pezzo surfaces, Adv. Math. 300 (2016) 156–189.Google Scholar
  24. 24.
    David Speyer and Bernd Sturmfels: The tropical Grassmannian, Adv. Geom. 4 (2004) 389–411.Google Scholar
  25. 25.
    Bernd Sturmfels: Fitness, Apprenticeship, and Polynomials, in Combinatorial Algebraic Geometry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  26. 26.
    Bernd Sturmfels: Gröbner bases and convex polytopes, University Lecture Series 8. American Mathematical Society, Providence, RI, 1996.Google Scholar
  27. 27.
    Bernd Sturmfels and Zhiqiang Xu: Sagbi bases of Cox-Nagata rings, J. Eur. Math. Soc. (JEMS) 12 (2010) 429–459.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Martha Bernal Guillén
    • 1
  • Daniel Corey
    • 2
  • Maria Donten-Bury
    • 3
    Email author
  • Naoki Fujita
    • 4
  • Georg Merz
    • 5
  1. 1.Unidad Académica de MatemáticasUniversidad Autónoma de ZacatecasZacatecasMexico
  2. 2.Department of MathematicsYale UniversityNew HavenUSA
  3. 3.Institute of MathematicsUniversity of WarsawWarszawaPoland
  4. 4.Department of MathematicsTokyo Institute of TechnologyTokyoJapan
  5. 5.Mathematisches InstitutGeorg-August Universität GöttingenGöttingenGermany

Personalised recommendations