Skip to main content

Equations of \(\overline{M}_{0,n}\)

  • Chapter
  • First Online:
Combinatorial Algebraic Geometry

Part of the book series: Fields Institute Communications ((FIC,volume 80))

Abstract

We study the moduli space \(\overline{M}_{0,n}\) of genus 0 curves with n marked points. Following Keel and Tevelev, we give explicit polynomials in the Cox ring of \(\mathbb{P}^{1} \times \mathbb{P}^{2} \times \cdots \times \mathbb{P}^{n-3}\) that, conjecturally, determine \(\overline{M}_{0,n}\) as a subscheme. Using Macaulay2, we prove that these equations generate the ideal for 5 ≤ n ≤ 8. For n ≤ 6, we also give a cohomological proof that these polynomials realize \(\overline{M}_{0,n}\) as a subvariety of \(\mathbb{P}^{(n-2)!-1}\) embedded by the complete log canonical linear system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renzo Cavalieri: Moduli spaces of pointed rational curves, Graduate Summer School, 2016 Combinatorial Algebraic Geometry Program, Fields Institute, Toronto, www.math.colostate.edu/~renzo/teaching/Moduli16/Fields.pdf.

  2. Melody Chan: Lectures on tropical curves and their moduli spaces, arXiv:1606.02778 [math.AG].

    Google Scholar 

  3. Ana-Maria Castravet and Jenia Tevelev: \(\overline{M}_{0,n}\) is not a Mori dream space, Duke Math. J. 164 (2015) 1641–1667.

    Google Scholar 

  4. Pierre Deligne and David Mumford: The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75–109.

    Google Scholar 

  5. Maksym Fedorchuk and David Ishii Smyth: Alternate compactifications of moduli spaces of curves, in Handbook of moduli I, 331–413, Adv. Lect. Math. 24, Int. Press, Somerville, MA, 2016.

    Google Scholar 

  6. José González and Kalle Karu: Some non-finitely generated Cox rings, Compos. Math. 152 (2016) 984–996.

    Google Scholar 

  7. Angela Gibney, Sean Keel, and Ian Morrison: Towards the ample cone of \(\overline{M}_{0,n}\), J. Amer. Math. Soc. 15 (2002) 273–294.

    Google Scholar 

  8. Angela Gibney and Diane Maclagan: Equations for Chow and Hilbert quotients, Algebra Number Theory 4 (2010) 855–885.

    Google Scholar 

  9. Yi Hu and Sean Keel: Mori dream spaces and GIT, Michigan Math. J. 48 (2000) 331–348.

    Google Scholar 

  10. Joe Harris and David Mumford: On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23–88.

    Google Scholar 

  11. Joe Harris and Ian Morrison: Moduli of curves, Graduate Texts in Mathematics 187, Springer-Verlag, New York, 1998.

    Google Scholar 

  12. Benjamin Howard, John Millson, Andrew Snowden, and Ravi Vakil: The equations for the moduli space of n points on the line, Duke Math. J. 146 (2009) 175–226.

    Google Scholar 

  13. Mikhail M. Kapranov: Chow quotients of Grassmannians I, in I.M.Gel’fand Seminar, 29–110, Adv. Soviet Math. 16, American. Mathematical. Society, Providence, RI, 1993.

    Google Scholar 

  14. _________ : Veronese curves and Grothendieck-Knudsen moduli space \(\overline{M}_{0,n}\), J. Algebraic Geom. 2 (1993) 239–262.

    Google Scholar 

  15. Sean Keel: Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992) 545–574.

    Google Scholar 

  16. Sean Keel and Jenia Tevelev: Equations for \(\overline{M}_{0,n}\), Internat. J. Math. 20 (2009) 1159–1184.

    Google Scholar 

  17. Andrei Losev and Yuri Manin: New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. 48 (2000) 443–472.

    Google Scholar 

  18. Diane Maclagan and Bernd Sturmfels: Introduction to Tropical Geometry, Graduate Studies in Mathematics 161, American Mathematical Society, RI, 2015.

    Google Scholar 

  19. Ranjan Roy: Binomial identities and hypergeometric series, Amer. Math. Monthly 94 (1987) 36–46.

    Google Scholar 

  20. Bernd Sturmfels: Fitness, apprenticeship, and polynomials, in Combinatorial Algebraic Geometry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

Download references

Acknowledgements

This article was initiated during the Apprenticeship Weeks (22 August–2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry Semester at the Fields Institute. We thank Bernd Sturmfels for providing inspiration and feedback on multiple drafts. We are also grateful to Christine Berkesch Zamaere, Renzo Cavalieri, Diane Maclagan, Steffen Marcus, Vic Reiner, and Jenia Tevelev for many helpful discussions. The second author was partially supported by a scholarship from the Clay Math Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Rana .

Editor information

Editors and Affiliations

Appendix

Appendix

We include the Macaulay2 code used to verify Conjecture 1.2.

R = QQ[a0,a1,b0,b1,b2,c0,c1,c2,c3,d0,d1,d2,d3,d4, e0,e1,e2,e3,e4,e5,f0,f1,f2,f3,f4,f5,f6];

The rows of the following matrix are coordinates on \(\mathbb{P}^{1}, \mathbb{P}^{2}, \mathbb{P}^{3}, \mathbb{P}^{4}, \mathbb{P}^{5}, \mathbb{P}^{6}\)

M = matrix{{0,0,0,0,0,0,0},      {a0,a1,0,0,0,0,0},            {b0,b1,b2,0,0,0,0},   {c0,c1,c2,c3,0,0,0},            {d0,d1,d2,d3,d4,0,0}, {e0,e1,e2,e3,e4,e5,0},            {f0,f1,f2,f3,f4,f5,f6} }; M05 = {{2,2}}; M06 = {{2,2},{3,2},{3,3}}; M07 = {{2,2},{3,2},{3,3},{4,2},{4,3},{4,4}}; M08 = {{2,2},{3,2},{3,3},{4,2},{4,3},{4,4},{5,2},{5,3},        {5,4},{5,5}}; M09 = {{2,2},{3,2},{3,3},{4,2},{4,3},{4,4},{5,2},{5,3},        {5,4},{5,5},{6,2},{6,3},{6,4},{6,5},{6,6}};

Select your desired n here:

L = M07;

Lemma 4.1 involves the 2 × 2-minors of the matrices

Q = apply(L, l -> {submatrix(M,{l_1-1,l_0}, 0..l_1-1),         M_(l_1)_(l_0) } ) S = apply(Q, T -> matrix{ apply(entries transpose T_0,             x -> x_0 * (x_1-T_1) ), (entries T_0)_1 })

We form the ideal J = J n of all such 2-minors, and compute the prime ideal I by saturation.

J = sum apply(S,N -> minors(2,N)); J = saturate(J,ideal(a0,a1)); J = saturate(J,ideal(b0,b1,b2)); J = saturate(J,ideal(c0,c1,c2,c3)); J = saturate(J,ideal(d0,d1,d2,d3,d4)); J = saturate(J,ideal(e0,e1,e2,e3,e4,e5)); I = saturate(J,ideal(f0,f1,f2,f3,f4,f5,f6));

The following are used to determine whether the dimension of I is correct, as well as compute the degree of I, and the minimal number of generators in each degree.

codim I, degree I, betti mingens I

We finally note that the initial ideal is square-free and Cohen–Macaulay :

M = monomialIdeal leadTerm I; betti mingens M

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monin, L., Rana, J. (2017). Equations of \(\overline{M}_{0,n}\) . In: Smith, G., Sturmfels, B. (eds) Combinatorial Algebraic Geometry. Fields Institute Communications, vol 80. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7486-3_6

Download citation

Publish with us

Policies and ethics