Advertisement

The Hilbert Scheme of 11 Points in \(\mathbb{A}^{3}\) Is Irreducible

  • Theodosios Douvropoulos
  • Joachim Jelisiejew
  • Bernt Ivar Utstøl Nødland
  • Zach TeitlerEmail author
Chapter
Part of the Fields Institute Communications book series (FIC, volume 80)

Abstract

We prove that the Hilbert scheme of 11 points on a smooth threefold is irreducible. In the course of the proof, we present several known and new techniques for producing curves on the Hilbert scheme.

MSC 2010 codes:

14C05 14D15 

Notes

Acknowledgements

This article was initiated during the Apprenticeship Weeks (22 August–2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry Semester at the Fields Institute. The authors wish to thank the Fields Institute, the organizers of the Thematic Program on Combinatorial Algebraic Geometry in Fall 2016, and the organizers of the Apprenticeship Weeks which took place during the program. We are very grateful to Mark Huibregtse, Anthony Iarrobino, Gary Kennedy, Greg Smith, Bernd Sturmfels, and several anonymous referees for numerous helpful comments. This work was supported by a grant from the Simons Foundation (#354574, Zach Teitler). JJ was supported by Polish National Science Center, project 2014/13/N/ST1/02640. BIUN was supported by NRC project 144013.

References

  1. 1.
    Michael Artin: Deformations of singularities, Tata Institute of Fundamental Research, Bombay, India, 1976.zbMATHGoogle Scholar
  2. 2.
    Patricia Borges dos Santos, Abdelmoubine Amar Henni, and Marcos Jardim: Commuting matrices and the Hilbert scheme of points on affine spaces, arXiv:1304.3028 [math.AG].Google Scholar
  3. 3.
    Winfried Bruns and Jürgen Herzog: Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge, 1993.Google Scholar
  4. 4.
    Weronika Buczyńska and Jarosław Buczyński: Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014) 63–90.Google Scholar
  5. 5.
    Weronika Buczyńska, Jarosław Buczyński, Johannes Kleppe, and Zach Teitler: Apolarity and direct sum decomposability of polynomials, Michigan Math. J. 64 (2015) 675–719.Google Scholar
  6. 6.
    Jarosław Buczyński and Joachim Jelisiejew: Finite schemes and secant varieties over arbitrary characteristic, Differential Geometry and its Applications. https://doi.org/10.1016/j.difgeo.2017.08.004
  7. 7.
    Enrico Carlini: Reducing the number of variables of a polynomial, in Algebraic geometry and geometric modeling, 237–247, Math. Vis., Springer, Berlin, 2006.Google Scholar
  8. 8.
    Dustin A. Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray: Hilbert schemes of 8 points, Algebra Number Theory, 3 (2009) 763–795.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gianfranco Casnati, Joachim Jelisiejew, and Roberto Notari: Irreducibility of the Gorenstein loci of Hilbert schemes via ray families, Algebra Number Theory 9 (2015) 1525–1570.Google Scholar
  10. 10.
    Gianfranco Casnati and Roberto Notari: On the Gorenstein locus of some punctual Hilbert schemes, J. Pure Appl. Algebra 213 (2009) 2055–2074.Google Scholar
  11. 11.
    Igor V. Dolgachev: Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012.Google Scholar
  12. 12.
    Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland, and Zach Teitler: CombalggeomApprenticeshipsHilbert, a Macaulay2 package, available at arxiv.org/src/1701.03089v1/anc/CombalggeomApprenticeshipsHilbert.m2.Google Scholar
  13. 13.
    David Eisenbud: Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.Google Scholar
  14. 14.
    David Eisenbud: The Geometry of Syzygies, Graduate Texts in Mathematics 229, Springer-Verlag, New York, 2005.Google Scholar
  15. 15.
    Joan Elias and Maria Evelina Rossi: Analytic isomorphisms of compressed local algebras, Proc. Amer. Math. Soc. 143 (2015) 973–987.Google Scholar
  16. 16.
    Jacques Emsalem: Géométrie des points épais, Bull. Soc. Math. France 106 (1978) 399–416.Google Scholar
  17. 17.
    Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli: Fundamental algebraic geometry, Mathematical Surveys and Monographs 123, American Mathematical Society, Providence, RI, 2005.zbMATHGoogle Scholar
  18. 18.
    John Fogarty: Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511–521.Google Scholar
  19. 19.
    Anthony V. Geramita: Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, in The Curves Seminar at Queen’s X (Kingston, ON, 1995), Queen’s Papers in Pure and Appl. Math. 102, 2–114. Queen’s Univ., Kingston, ON, 1996.Google Scholar
  20. 20.
    Lothar Göttsche: Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Math. 1572, Springer-Verlag, Berlin, 1994.Google Scholar
  21. 21.
    Gerd Gotzmann: Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978) 61–70.Google Scholar
  22. 22.
    Daniel R. Grayson and Michael E. Stillman: Macaulay2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/.Google Scholar
  23. 23.
    Gert-Martin Greuel and Gerhard Pfister: A Singular introduction to commutative algebra, extended edition, Springer, Berlin, 2008.zbMATHGoogle Scholar
  24. 24.
    Alexander Grothendieck: Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 1–361.Google Scholar
  25. 25.
    Robin Hartshorne: Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.Google Scholar
  26. 26.
    Robin Hartshorne: Deformation theory, Graduate Texts in Mathematics 257, Springer, New York, 2010.Google Scholar
  27. 27.
    Anthony Iarrobino: Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math. 15 (1972) 72–77.Google Scholar
  28. 28.
    Anthony Iarrobino: Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984) 337–378.Google Scholar
  29. 29.
    Anthony Iarrobino and Jacques Emsalem: Some zero-dimensional generic singularities; finite algebras having small tangent space, Compositio Math. 36 (1978) 145–188.Google Scholar
  30. 30.
    Anthony Iarrobino and Vassil Kanev: Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Math. 1721, Springer-Verlag, Berlin, 1999.Google Scholar
  31. 31.
    Joachim Jelisiejew: Classifying local artinian gorenstein algebras, Collectanea Mathematica 68 (2017) 101–127.Google Scholar
  32. 32.
    Hans Kleppe: Deformation of schemes defined by vanishing of Pfaffians, J. Algebra 53 (1978) 84–92.Google Scholar
  33. 33.
    Jan O. Kleppe and Rosa M. Miró-Roig: The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Algebra 127 (1998) 73–82.Google Scholar
  34. 34.
    Francis S. Macaulay: Some properties of enumeration in theory of modular systems, Proc. London Math. Soc. 25 (1927) 531–555.Google Scholar
  35. 35.
    Francis S. Macaulay: The algebraic theory of modular systems, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994.Google Scholar
  36. 36.
    Guerino Mazzola: Generic finite schemes and Hochschild cocycles, Comment. Math. Helv. 55 (1980) 267–293.Google Scholar
  37. 37.
    Ezra Miller and Bernd Sturmfels: Combinatorial commutative algebra, Graduate Texts in Mathematics 227. Springer-Verlag, New York, 2005.Google Scholar
  38. 38.
    Hiraku Nakajima: Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18. American Mathematical Society, Providence, RI, 1999.Google Scholar
  39. 39.
    Kristian Ranestad and Frank-Olaf Schreyer: Varieties of sums of powers, J. Reine Angew. Math. 525 (2000) 147–181.Google Scholar
  40. 40.
    Klemen Šivic: On varieties of commuting triples III, Linear Algebra Appl. 437 (2012) 393–460.Google Scholar
  41. 41.
    Bernd Sturmfels: Fitness, Apprenticeship, and Polynomials, in Combinatorial Algebraic Geometry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Theodosios Douvropoulos
    • 1
  • Joachim Jelisiejew
    • 2
  • Bernt Ivar Utstøl Nødland
    • 3
  • Zach Teitler
    • 4
    Email author
  1. 1.Institut de Recherche en Informatique Fondamentale (IRIF)Université Paris DiderotParis Cedex 13France
  2. 2.Institute of MathematicsUniversity of WarsawWarszawaPoland
  3. 3.Department of MathematicsUniversity of OsloOsloNorway
  4. 4.Department of MathematicsBoise State UniversityBoiseUSA

Personalised recommendations