Advertisement

The Convex Hull of Two Circles in \(\mathbb{R}^{3}\)

  • Evan D. NashEmail author
  • Ata Firat Pir
  • Frank Sottile
  • Li Ying
Chapter
Part of the Fields Institute Communications book series (FIC, volume 80)

Abstract

We describe convex hulls of the simplest compact space curves, reducible quartics consisting of two circles. When the circles do not meet in complex projective space, their algebraic boundary contains an irrational ruled surface of degree eight whose ruling forms a genus one curve. We classify which curves arise, classify the face lattices of the convex hulls, and determine which are spectrahedra. We also discuss an approach to these convex hulls using projective duality.

MSC 2010 codes:

52A05 14P10 90C22 

Notes

Acknowledgements

This article was initiated during the Apprenticeship Weeks (22 August–2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry Semester at the Fields Institute. Sottile, Pir, and Ying were supported in part by the National Science Foundation grant DMS-1501370.

References

  1. 1.
    Alexander Barvinok: A course in convexity, Graduate Studies in Mathematics 54, American Mathematical Society, Providence, RI, 2002.Google Scholar
  2. 2.
    Inversions-Technik GmbH Basle: Formerly Oloid AG, www.oloid.ch/index.php/en/.Google Scholar
  3. 3.
    Hans Dirnböck and Hellmuth Stachel: The development of the oloid, J. Geom. Graph. 1 (1997) 105–118.Google Scholar
  4. 4.
    Laura Escobar and Allen Knutson: The multidegree of the multi-image variety, in Combinatorial Algebraic Geometry, 283–296, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  5. 5.
    Steven R. Finch: Convex hull of two orthogonal disks, arXiv:1211.4514 [math.MG].Google Scholar
  6. 6.
    Nicola Geismann, Michael Hemmer, and Elmar Schömer: The convex hull of ellipsoids, in SCG’01 Proceedings of the seventeenth annual symposium on computational geometry, 321–322, Association for Computing Machinery, New York, 2001.Google Scholar
  7. 7.
    _________ : The convex hull of ellipsoids 2001, youtu.be/Tq9OS5iIcBc.
  8. 8.
    Branko Grünbaum: Convex polytopes, Graduate Texts in Mathematics 221, Springer-Verlag, New York, 2003.Google Scholar
  9. 9.
    Robin Hartshorne: Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
  10. 10.
    Hiroshi Ira: The development of the two-circle-roller in a numerical way, unpublished note, 2011, ilabo.bufsiz.jp/.Google Scholar
  11. 11.
    Trygve Johnsen: Plane projections of a smooth space curve, in Parameter spaces (Warsaw, 1994), 89–110, Banach Center Publ. 36, Polish Acad. Sci., Warsaw, 1996Google Scholar
  12. 12.
    Kathlén Kohn, Bernt Ivar Utstøl Nødland, and Paolo Tripoli: Secants, bitangents, and their congruences, in Combinatorial Algebraic Geometry, 87–112, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  13. 13.
    Kristian Ranestad and Bernd Sturmfels: The convex hull of a variety, in Notions of Positivity and the Geometry of Polynomials, 331–344, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2011.Google Scholar
  14. 14.
    _________ : On the convex hull of a space curve, Adv. Geom. 12 (2012) 157–178.Google Scholar
  15. 15.
    Raman Sanyal, Frank Sottile, and Bernd Sturmfels: Orbitopes, Mathematika 57 (2011) 275–314.Google Scholar
  16. 16.
    Paul Schatz: Oloid, a device to generate a tumbling motion, Swiss Patent No. 500,000, 1929.Google Scholar
  17. 17.
    Claus Scheiderer: Semidefinite representation for convex hulls of real algebraic curves, SIAM J. Appl. Algebra Geom, arXiv:1208.3865 [math.AG].Google Scholar
  18. 18.
    _________ : Semidefinitely representable convex sets, SIAM J. Appl. Algebra Geom (in appear).Google Scholar
  19. 19.
    Abraham Seidenberg: A new decision method for elementary algebra, Ann. of Math. (2) 60 (1954) 365–374.Google Scholar
  20. 20.
    Rainer Sinn: Algebraic boundaries of \(\mathop{\mathrm{SO}}\nolimits (2)\)-orbitopes, Discrete Comput. Geom. 50 (2013) 219–235.Google Scholar
  21. 21.
    Bernd Sturmfels: Fitness, apprenticeship, and polynomials, in Combinatorial Algebraic Geometry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  22. 22.
    Alfred Tarski: A Decision Method for Elementary Algebra and Geometry, RAND Corporation, Santa Monica, Calif., 1948.Google Scholar
  23. 23.
    Cynthia Vinzant: Edges of the Barvinok–Novik orbitope, Discrete Comput. Geom. 46 (2011) 479–487.Google Scholar
  24. 24.
    Günter M. Ziegler: Lectures on polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Evan D. Nash
    • 1
    Email author
  • Ata Firat Pir
    • 2
  • Frank Sottile
    • 2
  • Li Ying
    • 2
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations