Skip to main content

The Convex Hull of Two Circles in \(\mathbb{R}^{3}\)

  • Chapter
  • First Online:
Combinatorial Algebraic Geometry

Part of the book series: Fields Institute Communications ((FIC,volume 80))

Abstract

We describe convex hulls of the simplest compact space curves, reducible quartics consisting of two circles. When the circles do not meet in complex projective space, their algebraic boundary contains an irrational ruled surface of degree eight whose ruling forms a genus one curve. We classify which curves arise, classify the face lattices of the convex hulls, and determine which are spectrahedra. We also discuss an approach to these convex hulls using projective duality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander Barvinok: A course in convexity, Graduate Studies in Mathematics 54, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  2. Inversions-Technik GmbH Basle: Formerly Oloid AG, www.oloid.ch/index.php/en/.

    Google Scholar 

  3. Hans Dirnböck and Hellmuth Stachel: The development of the oloid, J. Geom. Graph. 1 (1997) 105–118.

    Google Scholar 

  4. Laura Escobar and Allen Knutson: The multidegree of the multi-image variety, in Combinatorial Algebraic Geometry, 283–296, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  5. Steven R. Finch: Convex hull of two orthogonal disks, arXiv:1211.4514 [math.MG].

    Google Scholar 

  6. Nicola Geismann, Michael Hemmer, and Elmar Schömer: The convex hull of ellipsoids, in SCG’01 Proceedings of the seventeenth annual symposium on computational geometry, 321–322, Association for Computing Machinery, New York, 2001.

    Google Scholar 

  7. _________ : The convex hull of ellipsoids 2001, youtu.be/Tq9OS5iIcBc.

  8. Branko Grünbaum: Convex polytopes, Graduate Texts in Mathematics 221, Springer-Verlag, New York, 2003.

    Google Scholar 

  9. Robin Hartshorne: Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.

    Google Scholar 

  10. Hiroshi Ira: The development of the two-circle-roller in a numerical way, unpublished note, 2011, ilabo.bufsiz.jp/.

    Google Scholar 

  11. Trygve Johnsen: Plane projections of a smooth space curve, in Parameter spaces (Warsaw, 1994), 89–110, Banach Center Publ. 36, Polish Acad. Sci., Warsaw, 1996

    Google Scholar 

  12. Kathlén Kohn, Bernt Ivar Utstøl Nødland, and Paolo Tripoli: Secants, bitangents, and their congruences, in Combinatorial Algebraic Geometry, 87–112, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  13. Kristian Ranestad and Bernd Sturmfels: The convex hull of a variety, in Notions of Positivity and the Geometry of Polynomials, 331–344, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2011.

    Google Scholar 

  14. _________ : On the convex hull of a space curve, Adv. Geom. 12 (2012) 157–178.

    Google Scholar 

  15. Raman Sanyal, Frank Sottile, and Bernd Sturmfels: Orbitopes, Mathematika 57 (2011) 275–314.

    Google Scholar 

  16. Paul Schatz: Oloid, a device to generate a tumbling motion, Swiss Patent No. 500,000, 1929.

    Google Scholar 

  17. Claus Scheiderer: Semidefinite representation for convex hulls of real algebraic curves, SIAM J. Appl. Algebra Geom, arXiv:1208.3865 [math.AG].

    Google Scholar 

  18. _________ : Semidefinitely representable convex sets, SIAM J. Appl. Algebra Geom (in appear).

    Google Scholar 

  19. Abraham Seidenberg: A new decision method for elementary algebra, Ann. of Math. (2) 60 (1954) 365–374.

    Google Scholar 

  20. Rainer Sinn: Algebraic boundaries of \(\mathop{\mathrm{SO}}\nolimits (2)\)-orbitopes, Discrete Comput. Geom. 50 (2013) 219–235.

    Google Scholar 

  21. Bernd Sturmfels: Fitness, apprenticeship, and polynomials, in Combinatorial Algebraic Geometry, 1–19, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.

    Google Scholar 

  22. Alfred Tarski: A Decision Method for Elementary Algebra and Geometry, RAND Corporation, Santa Monica, Calif., 1948.

    Google Scholar 

  23. Cynthia Vinzant: Edges of the Barvinok–Novik orbitope, Discrete Comput. Geom. 46 (2011) 479–487.

    Google Scholar 

  24. Günter M. Ziegler: Lectures on polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.

    Google Scholar 

Download references

Acknowledgements

This article was initiated during the Apprenticeship Weeks (22 August–2 September 2016), led by Bernd Sturmfels, as part of the Combinatorial Algebraic Geometry Semester at the Fields Institute. Sottile, Pir, and Ying were supported in part by the National Science Foundation grant DMS-1501370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan D. Nash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nash, E.D., Pir, A.F., Sottile, F., Ying, L. (2017). The Convex Hull of Two Circles in \(\mathbb{R}^{3}\) . In: Smith, G., Sturmfels, B. (eds) Combinatorial Algebraic Geometry. Fields Institute Communications, vol 80. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7486-3_14

Download citation

Publish with us

Policies and ethics