Advertisement

Fitness, Apprenticeship, and Polynomials

  • Bernd SturmfelsEmail author
Chapter
Part of the Fields Institute Communications book series (FIC, volume 80)

Abstract

This article discusses the design of the Apprenticeship Program at the Fields Institute, held 21 August–3 September 2016. Six themes from combinatorial algebraic geometry were selected for the 2 weeks: curves, surfaces, Grassmannians, convexity, abelian combinatorics, parameters and moduli. The activities were structured into fitness, research and scholarship. Combinatorics and concrete computations with polynomials (and theta functions) empowers young scholars in algebraic geometry, and it helps them to connect with the historic roots of their field. We illustrate our perspective for the threefold obtained by blowing up six points in \(\mathbb{P}^{3}\).

MSC 2010 codes:

14Q15 05E40 14-01 

Notes

Acknowledgements

This article benefited greatly from comments by Lara Bossinger, Fatemeh Mohammadi, Emre Sertöz, Mauricio Velasco, and an anonymous referee. The apprenticeship program at the Fields Institute was supported by the Clay Mathematics Institute. The author also acknowledges partial support from the Einstein Foundation Berlin, MPI Leipzig, and the US National Science Foundation (DMS-1419018).

References

  1. 1.
    Barbara Bolognese, Madeline Brandt, and Lynn Chua: From curves to tropical Jacobians and back, in Combinatorial Algebraic Geometry, 21–45, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  2. 2.
    Corey Harris and Yoav Len: Tritangent planes to space sextics: the algebraic and tropical stories, in Combinatorial Algebraic Geometry, 47–63, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  3. 3.
    Melody Chan and Pakawut Jiradilok: Theta characteristics of tropical K 4-curves, in Combinatorial Algebraic Geometry, 65–86, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  4. 4.
    Kathlén Kohn, Bernt Ivar Utstøl Nødland, and Paolo Tripoli: Secants, bitangents, and their congruences, in Combinatorial Algebraic Geometry, 87–112, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  5. 5.
    Leonid Monin and Julie Rana: Equations of \(\overline{M}_{0,n}\), in Combinatorial Algebraic Geometry, 113–132, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  6. 6.
    Netanel Friedenberg, Alessandro Oneto, and Robert Williams: Minkowski sums and Hadamard products of algebraic varieties, in Combinatorial Algebraic Geometry, 133–157, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  7. 7.
    Martha Bernal Guillén, Daniel Corey, Maria Donton-Bury, Naoki Fujita, and Georg Merz: Khovanskii bases of Cox-Nagata rings and tropical geometry, in Combinatorial Algebraic Geometry, 159–179, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  8. 8.
    Barbara Bolognese, Corey Harris, and Joachim Jelisiejew: Equations and tropicalization of Enriques surfaces, in Combinatorial Algebraic Geometry, 181–200, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  9. 9.
    John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska: Specht polytopes and Specht matroids, in Combinatorial Algebraic Geometry, 201–228, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  10. 10.
    Madeline Brandt, Juliette Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva: The degree of \(\mathop{\mathrm{SO}}\nolimits (n)\), in Combinatorial Algebraic Geometry, 229–246, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  11. 11.
    Lara Bossinger, Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi: Computing toric degenerations of flag varieties, in Combinatorial Algebraic Geometry, 247–281, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  12. 12.
    Laura Escobar and Allen Knutson: The multidegree of the multi-image variety, in Combinatorial Algebraic Geometry, 283–296, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  13. 13.
    Evan D. Nash, Ata Firat Pir, Frank Sottile, and Li Ying: The convex hull of two circles in \(\mathbb{R}^{3}\), in Combinatorial Algebraic Geometry, 297–319, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  14. 14.
    Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland, and Zach Teitler: The Hilbert scheme of 11 points in \(\mathbb{A}^{3}\) is irreducible, in Combinatorial Algebraic Geometry, 321–352, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  15. 15.
    Bo Lin and Martin Ulirsch: Towards a tropical Hodge bundle, in Combinatorial Algebraic Geometry, 353–369, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  16. 16.
    Lars Kastner, Kristin Shaw, and Anna-Lena Winz: Computing sheaf cohomology in Polymake, in Combinatorial Algebraic Geometry, 369–385, Fields Inst. Commun. 80, Fields Inst. Res. Math. Sci., 2017.Google Scholar
  17. 17.
    Karim Adiprasito and Raman Sanyal: Relative Stanley–Reisner theory and Upper Bound Theorems for Minkowski sums, Publ. Math. Inst. Hautes Études Sci. 124 (2016) 99–163.Google Scholar
  18. 18.
    Valery Alexeev: Moduli of weighted hyperplane arrangements, in Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser/Springer, Basel, 2015Google Scholar
  19. 19.
    Vladimir I. Arnold: A-graded algebras and continued fractions, Comm. Pure Appl. Math. 42 (1989) 993–1000.Google Scholar
  20. 20.
    Alexander Barvinok: A Course in Convexity, Graduate Studies in Mathematics 54. American Mathematical Society, Providence, RI, 2002.Google Scholar
  21. 21.
    Dori Bejleri and Gjergji Zaimi: The topology of equivariant Hilbert schemes, arXiv:1512.05774 [math.AG].Google Scholar
  22. 22.
    Dustin Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray: Hilbert schemes of 8 points, Algebra Number Theory 3 (2009) 763–795.Google Scholar
  23. 23.
    Ana-Maria Castravet and Jenia Tevelev: Hilbert’s 14th problem and Cox rings, Compos. Math. 142 (2006) 1479–1498.Google Scholar
  24. 24.
    Wouter Castryck and John Voight: On nondegeneracy of curves, Algebra Number Theory 6 (2012) 1133–1169.Google Scholar
  25. 25.
    Ciro Ciliberto: On the degree of genus of smooth curves in a projective space, Adv. Math. 81 (1990) 198–248.Google Scholar
  26. 26.
    Bernard Deconinck and Mark van Hoeij: Computing Riemann matrices of algebraic curves, Phys. D 152/153 (2001) 28–46.Google Scholar
  27. 27.
    David Eisenbud and Joe Harris: On varieties of minimal degree (a centennial account), in Algebraic geometry, Bowdoin, 1985, 3–13, Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence, RI, 1987.Google Scholar
  28. 28.
    Günter Ewald: Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics 168, Springer-Verlag, New York, 1996Google Scholar
  29. 29.
    Tom Fisher: Pfaffian presentations of elliptic normal curves, Trans. Amer. Math. Soc. 362 (2010) 2525–2540.Google Scholar
  30. 30.
    Jörg Gretenkort, Peter Kleinschmidt, and Bernd Sturmfels: On the existence of certain smooth toric varieties, Discrete Comput. Geom. 5 (1990) 255–262.Google Scholar
  31. 31.
    Tawanda Gwena: Degenerations of cubic threefolds and matroids, Proc. Amer. Math. Soc. 133 (2005) 1317–1323.Google Scholar
  32. 32.
    Paul Helminck: Tropical Igusa invariants and torsion embeddings,arXiv:1604.03987 [math.AG].Google Scholar
  33. 33.
    Milena Hering and Diane Maclagan: The T-graph of a multigraded Hilbert scheme, Exp. Math. 21 (2012) 280–297.Google Scholar
  34. 34.
    Ronold W.H. Hudson: Kummer’s Quartic Surface, Cambridge University Press, 1905.Google Scholar
  35. 35.
    Manelaos Karavelas, Christos Konaxis and Eleni Tzanaki: The maximum number of faces of the Minkowski sum of three convex polytopes, J. Comput. Geom. 6 (2015) 21–74.Google Scholar
  36. 36.
    Kiumars Kaveh and Christopher Manon: Khovanskii bases, Newton–Okounkov polytopes and tropical geometry of projective varieties, arXiv:1610.00298 [math.AG].Google Scholar
  37. 37.
    Maximilian Kreuzer and Harald Skarke: Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2000) 1209–1230.Google Scholar
  38. 38.
    Diane Maclagan and Bernd Sturmfels: Introduction to Tropical Geometry, Graduate Studies in Mathematics 161, American Mathematical Society, Providence, RI, 2015.Google Scholar
  39. 39.
    Christopher Manon: The algebra of \(\mathop{\mathrm{SL}}\nolimits _{3}(\mathbb{C})\) conformal blocks, Transform. Groups 4 (2013) 1165–1187.Google Scholar
  40. 40.
    Ezra Miller and Bernd Sturmfels: Combinatorial Commutative Algebra, Graduate Texts in Mathematics 227, Springer-Verlag, New York, 2004.Google Scholar
  41. 41.
    David Mumford, John Fogarty, and Frances Kirwan: Geometric Invariant Theory, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer, Berlin, 1994.Google Scholar
  42. 42.
    Irena Peeva and Mike Stillman: Toric Hilbert schemes, Duke Math. J. 111 (2002) 419–449.Google Scholar
  43. 43.
    Motakuri Ramana and Alan Goldman: Some geometric results in semidefinite programming, J. Global Optim. 7 (1995) 33–50.Google Scholar
  44. 44.
    Emanuel Reinecke: Moduli Space of Cubic Surfaces, Bachelorarbeit Mathematik, Universität Bonn, July 2012.Google Scholar
  45. 45.
    Qingchun Ren, Steven Sam, and Bernd Sturmfels: Tropicalization of classical moduli spaces, Math. Comput. Sci. 8 (2014) 119–145.Google Scholar
  46. 46.
    Qingchun Ren, Steven Sam, Gus Schrader, and Bernd Sturmfels: The universal Kummer threefold, Exp. Math. 22 (2013) 327–362.Google Scholar
  47. 47.
    Qingchun Ren, Kristin Shaw, and Bernd Sturmfels: Tropicalization of Del Pezzo surfaces, Adv. Math. 300 (2016) 156–189.Google Scholar
  48. 48.
    James Ruffo: Quasimaps, straightening laws, and quantum cohomology for the Lagrangian Grassmannian, Algebra Number Theory 2 (2008) 819–858.Google Scholar
  49. 49.
    Raman Sanyal, Frank Sottile, and Bernd Sturmfels: Orbitopes, Mathematika 57 (2011) 275–314.Google Scholar
  50. 50.
    Frank-Olaf Schreyer: Computer aided unirationality proofs of moduli spaces, in Handbook of moduli. Vol. III, 257–280, Adv. Lect. Math. 26, Int. Press, Somerville, MA, 2013.Google Scholar
  51. 51.
    Joshua Scott: Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92 (2006) 345–380.Google Scholar
  52. 52.
    Frank Sottile: Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro, Exp. Math. 9 (2000) 161–182.Google Scholar
  53. 53.
    Reinhard Steffens and Thorsten Theobald: Combinatorics and genus of tropical intersections and Ehrhart theory, SIAM J. Discrete Math. 24 (2010) 17–32.Google Scholar
  54. 54.
    Bernd Sturmfels: Gröbner Bases and Convex Polytopes, University Lecture Series 8. American Mathematical Society, Providence, RI, 1996.Google Scholar
  55. 55.
    Bernd Sturmfels: Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000) 282–294.Google Scholar
  56. 56.
    Bernd Sturmfels: Solving Systems of Polynomial Equations, CBMS Regional Conference Series in Mathematics 97, American Mathematical Society, Providence, RI, 2002Google Scholar
  57. 57.
    Bernd Sturmfels: The Hurwitz form of a projective variety, J. Symbolic Comput. 79 (2017) 186–196.Google Scholar
  58. 58.
    Bernd Sturmfels and Seth Sullivant: Toric ideals of phylogenetic invariants, J. Comput. Biol. 12 (2005) 204–228.Google Scholar
  59. 59.
    Bernd Sturmfels and Mauricio Velasco: Blow-ups of \(\mathbb{P}^{n-3}\) at n points and spinor varieties, J. Commut. Algebra 2 (2010) 223–244.Google Scholar
  60. 60.
    Bernd Sturmfels and Zhiqiang Xu: Sagbi bases of Cox–Nagata rings, J. Eur. Math. Soc. (JEMS) 12 (2010) 429–459.Google Scholar
  61. 61.
    Christopher Swierczewski and Bernard Deconinck: Riemann theta functions in Sage with applications, Math. Comput. Simulation 127 (2016) 263–272.Google Scholar
  62. 62.
    Qiaochu Yuan: Explicit equations in the plane for elliptic curves as space quartics, for the Intel Talent Search 2008, available at math.berkeley.edu/ ∼ qchu/Intel.pdf.
  63. 63.
    Jakub Witaszek: The degeneration of the Grassmannian into a toric variety and the calculation of the eigenspaces of a torus action, J. Algebr. Stat. 6 (2015) 62–79.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Max-Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations