Skip to main content

Fetal Growth Restriction at High Altitude: Clinical Observations

  • Chapter
  • First Online:
The Rise of Fetal and Neonatal Physiology

Part of the book series: Perspectives in Physiology ((PHYSIOL))

Abstract

In terms of the optimal conditions for fetal development, numerous investigators have noted that fetal growth and development occurs in an environment of maternal homeostasis and well-being, and with the mother’s ability to respond appropriately to a particular stress. One such stress is that of long-term hypoxia (LTH). Because fetal growth critically depends upon adequate maternal oxygenation, conditions such as residence at high altitude (>2500 m) or that of mothers who are moderate to heavy smokers or with cyanotic congenital heart disease, lung disease, severe anemia, and other conditions that cause prolonged hypoxia may be associated with fetal growth restriction (FGR) (Hutter et al. 2010; Longo 1984; Longo and Goyal 2014; Neerhof and Thaete 2008). The impact of hypoxia on embryonic/fetal biology is a function of factors such as the stage of gestation and development, severity of the hypoxic event, its duration, and its association with other confounders including acidemia, hypercapnia, and/or ischemia. In addition, and as noted, fetal growth and development critically depend upon adequate placental substrate transport and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alia, K.Z.M., Burton, G.J., Morad, N., & Ali, M.E. Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude?. Placenta, 17(8), 677-682, 1996.

    Google Scholar 

  • Battaglia, F.C., & Lubchenco, L.O.A practical classification of newborn infants by weight and gestational age. The Journal of pediatrics, 71(2), 159-163, 1967.

    Google Scholar 

  • Beall, C.M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA 104 Suppl 1:8655-8660, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabes, A., J. Pereda, L. Hyams, N. Barrientos, J. Perez, L. Campos, A. Monroe & A. Mayorga. Comparative morphometry of the human placenta at high altitude and at sea level. Obstet Gynecol 31:178-185, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Eastman, N.J. Mount Everest in utero. Am J Obstet Gynecol 67:701-711, 1954.

    Article  CAS  PubMed  Google Scholar 

  • Espinoza, J., N.J. Sebire, F. McAuliffe, E. Krampl & K.H. Nicolaides. Placental villus morphology in relation to maternal hypoxia at high altitude. Placenta 22:606-608, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Garruto, R.M., G.D. James & M.A. Little. Biographical Memoir. Paul Thornell Baker 1927-2007. Washington, D.C., National Academy of Sciences, 2009.

    Google Scholar 

  • Giussani, D.A., P.S. Phillips, S. Anstee & D.J. Barker. Effects of altitude versus economic status on birth weight and body shape at birth. Pediatr Res 49:490-494, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, J. Altitude and maternal and infant capabilities. In: Horizons in Perinatal Research: Implications for Clinical Care. Kretchmer, N. & E.G. Hasselmeyer (Eds). New York, John Wiley & Sons, 1974, p. 84-93.

    Google Scholar 

  • Grahn, D. & J. Kratchman. Variation in neonatal death rate and birth weight in the United States and possible relations to environmental radiation, geology and altitude. Am J Hum Genet 15:329-352, 1963.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, J.D., P.T. Baker & E.E. Hunt, Jr. The effects of high altitude on body size and composition of the newborn infant in Southern Peru. Hum Biol 49:611-628, 1977.

    CAS  PubMed  Google Scholar 

  • Haas, J.D., H. Balcazar & L. Caulfield. Variation in early neonatal mortality for different types of fetal growth retardation. Am J Phys Anthropol 73:467-473, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Hass, J.D., E.A. Frongillo, Jr., C.D. Stepick, J.L. Beard & L. Hurtado. Altitude, ethnic and sex difference in birth weight and length in Bolivia. Hum Biol 52:459-477, 1980.

    CAS  PubMed  Google Scholar 

  • Haas, J.D., G. Moreno-Black, E.A. Frongillo, Jr., J. Pabon, G. Pareja, J. Ybarnegaray & L. Hurtado. Altitude and infant growth in Bolivia: a longitudinal study. Am J Phys Anthropol 59:251-262, 1982.

    Article  CAS  PubMed  Google Scholar 

  • Howard, R.C., P.D. Bruns & J.A. Lichty. Studies on babies born at high altitudes. III. Arterial oxygen saturation and hematocrit values at birth. AMA J Dis Child 93:674-678, 1957a.

    Google Scholar 

  • Howard, R.C., J.A. Lichty & P.D. Bruns. Studies on babies born at high altitude. II. Measurement of birth weight, body length and head size. AMA J Dis Child 93:670-674, 1957b.

    Google Scholar 

  • Hutter, D., J. Kingdom & E. Jaeggi. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010:401323, 2010.

    Google Scholar 

  • Jensen, G.M. & L.G. Moore. The effect of high altitude and other risk factors on birthweight: independent or interactive effects? Am J Public Health 87:1003-1007, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julian, C.G., E. Vargas, J.F. Armaza, M.J. Wilson, S. Niermeyer & L.G. Moore. High-altitude ancestry protects against hypoxia-associated reductions in fetal growth. Arch Dis Child Fetal Neonatal Ed 92:F372-F377, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keyes, L.E., J.F. Armaza, S. Niermeyer, E. Vargas, D.A. Young & L.G. Moore. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res 54:20-25, 2003.

    Article  PubMed  Google Scholar 

  • Khalid, M.E., M.E. Ali & K.Z. Ali. Full-term birth weight and placental morphology at high and low altitude. Int J Gynaecol Obstet 57:259-265, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Krampl, E. Pregnancy at high altitude. Ultrasound Obstet Gynecol 19:535-539, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Krampl, E., C. Lees, J.M. Bland, J. Espinoza Dorado, G. Moscoso & S. Campbell. Fetal biometry at 4300m compared to sea level in Peru. Ultrasound Obstet Gynecol 16:9-18, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Krüger, H. & J. Arias-Stella. The placenta and the newborn infant at high altitudes. Am J Obstet Gynecol 106:586-591, 1970.

    Article  PubMed  Google Scholar 

  • Lichty, J.A., R.Y. Ting, P.D. Bruns & E. Dyar. Studies of babies born at high altitudes. I. Relation of altitude to birth weight. AMA J Dis Child 93:666-669, 1957.

    Article  CAS  PubMed  Google Scholar 

  • Longo, L.D. Intrauterine growth retardation: a “mosaic” hypothesis of pathophysiology. Semin Perinatol 8:62-72, 1984.

    CAS  PubMed  Google Scholar 

  • Longo, L.D. Respiratory gas exchange in the placenta. In: Handbook of Physiology. The Respiratory System. Gas Exchange. (Sect. 3, vol. IV). Bethesda, MD: American Physiological Society, 1987, p. 351-401.

    Google Scholar 

  • Longo, L.D. & R. Goyal. The stress of chronic hypoxia in fetal growth restriction: some physiological considerations. In: Stress and Developmental Programming of Health and Disease: Beyond Phenomenology. Zhang, L. & Longo, L.D. (Eds). New York, Nova Science Publishers, Inc, 2014.

    Google Scholar 

  • Lubchenco, L.O. Assessment of gestational age and development of birth. Pediatr Clin North Am 17:125-145, 1970.

    Article  CAS  PubMed  Google Scholar 

  • Lubchenco, L.O., C. Hansman & E. Boyd. Intrauterine growth in length and head circumference as estimated from live births at gestational ages from 26 to 42 weeks. Pediatrics 37:403-408, 1966.

    CAS  PubMed  Google Scholar 

  • Lubchenco, L.O., C. Hansman, M. Dressler & E. Boyd. Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 32:793-800, 1963.

    CAS  PubMed  Google Scholar 

  • Lubchenco, L.O., D.T. Searls & J.V. Brazie. Neonatal mortality rate: relationship to birth weight and gestational age. J Pediatr 81:814-822, 1972.

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane, A. Altitude and birth weight: commentary. J Pediatr 111:842-844, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew, T.M., M.R. Jackson & J.D. Haas. Oxygen diffusive conductances of human placentae from term pregnancies at low and high altitudes. Placenta 11:493-503, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Mazess, R.B. Neonatal mortality and altitude in Peru. Am J Phys Anthropol 23:209-213, 1965.

    Article  CAS  PubMed  Google Scholar 

  • Mazess, R.B. Human adaptation to high altitude. In: Physiological Anthropology. Damon, E. (Ed). New York, Oxford University Press, 1975, p. 167-209.

    Google Scholar 

  • McClung, J. Effects of High Altitude on Human Birth. Observations on Mothers, Placentas, and the Newborn in Two Peruvian Populations. Cambridge, MA, Harvard University Press, 1969.

    Book  Google Scholar 

  • McCullough, R.E. & J.T. Reeves. Fetal growth retardation and increased infant mortality at high altitude. Arch Environ Health 32:36-39, 1977.

    Article  CAS  PubMed  Google Scholar 

  • McCullough, R.E., J.T. Reeves & R.L. Liljegren. Fetal growth retardation and increased infant mortality at high altitude. Obstet Gynecol Surv 32:596-598, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Moore, L.G. Maternal O2 transport and fetal growth in Colorado, Peru, and Tibet high-altitude residents. Am J Hum Biol 2:627-637, 1990.

    Article  PubMed  Google Scholar 

  • Moore, L.G. Fetal growth restriction and maternal oxygen transport during high altitude pregnancy. High Alt Med Biol 4:141-156, 2003.

    Article  PubMed  Google Scholar 

  • Moore, L.G., P. Brodeur, O. Chumbe, J. D’Brot, S. Hofmeister & C. Monge. Maternal hypoxic ventilatory response, ventilation, and infant birth weight at 4,300m. J Appl Physiol 60:1401-1406, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Moore, L.G., S.M. Charles & C.G. Julian. Humans at high altitude: hypoxia and fetal growth. Respir Physiol Neurobiol 178:181-190, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, L.G., S. Niermeyer & S. Zamudio. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol Suppl 27:25-64, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Moore, L.G., M. Shriver, L. Bemis, B. Hickler, M. Wilson, T. Brutsaert, E. Parra & E. Vargas. Maternal adaptation to high-altitude pregnancy: an experiment of nature—a review. Placenta25 Suppl A:S60-S71, 2004.

    Google Scholar 

  • Moore, L.G., D. Young, R.E. McCullough, T. Droma & S. Zamudio. Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. Am J Hum Biol 13:635-644, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Mortola, J.P., P.B. Frappell, L. Aguero & K. Armstrong. Birth weight and altitude: A study in Peruvian communities. J Pediatr 136:324-329, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Neerhof, M.G. & L.G. Thaete. The fetal response to chronic placental insufficiency. Semin Perinatol 32:201-205, 2008.

    Article  PubMed  Google Scholar 

  • Shapiro, S., J. Unger & U.S. Public Health Service & National Center for Health Statistics (U.S.). Weight at birth and its effect on survival of the newborn in the United States, early 1950. Vital Statistics-Special Reports, Selected Studies, Vol. 39, No. 1. Rockville, MD: U.S. Dept. of Health, Education, and Welfare, Public Health Service, 1954.

    Google Scholar 

  • Simonson, T.S., Y. Yang, C.D. Huff, H. Yun, G. Qin, D.J. Witherspoon, Z. Bai, F.R. Lorenzo, J. Xing, L.B. Jorde, J.T. Prchal & R. Ge. Genetic evidence for high-altitude adaptation in Tibet. Science 329:72-75, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Soria, R., C.G. Julian, E. Vargas, L.G. Moore & D.A. Giussani. Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatr Res 74:633-638, 2013.

    Article  PubMed  Google Scholar 

  • Thureen, P.J., K.A. Trembler, G. Meschia, E.L. Makowski & R.B. Wilkening. Placental glucose transport in heat-induced fetal growth retardation. Am J Physiol 263:R578-R585, 1992.

    CAS  PubMed  Google Scholar 

  • Tissot van Patot, M., A. Grilli, P. Chapman, E. Broad, W. Tyson, D.S. Heller, L. Zwerdlinger & S. Zamudio. Remodelling of uteroplacental arteries is decreased in high altitude placentae. Placenta 24:326-335, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Unger, C., J.K. Weiser, R.E. McCullough, S. Keefer & L.G. Moore. Altitude, low birth weight, and infant mortality in Colorado. JAMA 259:3427-3432, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Y.B. Zhang, F. Zhang, H. Lin, X. Wang, N. Wan, Z. Ye, H. Weng, L. Zhang, X. Li, J. Yan, P. Wang, T. Wu, L. Cheng, J. Wang, D.M. Wang, X. Ma & J. Yu. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS One 6:e17002, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West, J.B. Highest permanent human habitation. High Alt Med Biol 3:401-407, 2002.

    Article  PubMed  Google Scholar 

  • Yangzom, Y., L. Qian, M. Shan, Y. La, D. Meiduo, X. Hu, Q. Da, B. Sun & R. Zetterström. Outcome of hospital deliveries of women living at high altitude: a study from Lhasa in Tibet. Acta Paediatr 97:317-321, 2008.

    Article  PubMed  Google Scholar 

  • Yerushalmy, J., B.J. van den Berg, C.L. Erhardt & H. Jacobziner. Birth weight and gestation as indices of “immaturity”: neonatal mortality and congenital anomalies of the “immature”. Am J Dis Child 109:43-57, 1965.

    Article  CAS  PubMed  Google Scholar 

  • Yip, R. Altitude and birth weight. J Pediatr 111:869-876, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Zamudio, S. The placenta at high altitude. High Alt Med Biol 4:171-191, 2003.

    Article  PubMed  Google Scholar 

  • Zamudio, S., T. Droma, K.Y. Norkyel, G. Acharya, J.A. Zamudio, S.N. Niermeyer & L.G. Moore. Protection from intrauterine growth retardation in Tibetans at high altitude. Am J Phys Anthropol 91:215-224, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Zamudio, S., Postigo, L., Illsley, N.P., Rodriguez, C., Heredia, G., Brimacombe, M., Echalar, L., Torricos, T., Tellez, T., Maldonado, I., Balanza, E., Alvarez, T., Ameller, J., Vargas, E. Maternal oxygen delivery is not related to altitude- and ancestry-associated differences in human fetal growth. Journal of Physiology 582 (2): 883-895, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longo, L.D. (2018). Fetal Growth Restriction at High Altitude: Clinical Observations. In: The Rise of Fetal and Neonatal Physiology . Perspectives in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7483-2_14

Download citation

Publish with us

Policies and ethics