Succession and Mycorrhizae on Mount St. Helens

  • Michael F. Allen
  • Matthew R. O’Neill
  • Charles M. Crisafulli
  • James A. MacMahon


Mycorrhizae are symbiotic mutualisms between plants and fungi, in which carbon is exchanged for nutrients. The eruption of Mount St. Helens was a large event that covered a topographically complex land area with disturbances of varying intensity that altered survival of soil organisms. Animals from rodents to elk fed upon and transported mycorrhizal fungi through the different disturbance zones, facilitating succession and altering the newly forming soils and vegetation. Mechanisms of interaction among individual combinations of mycorrhizal fungi, plants, and animals were predictable, but the different species combinations resulting from initial survival legacies created the dynamic and complex landscape we observe today.


Volcanic disturbance Fungi Symbioses Mutualisms Soil ecology Plant community Rodents Tephra Colonization Survival Mount St. Helens Disturbance gradient Succession 


  1. Adams, A.B., V.H. Dale, A.R. Kruckeberg, and E. Smith. 1987. Plant survival, growth form and regeneration following the May 18, 1980, eruption of Mount St. Helens, Washington. Northwest Science 61: 160–170.Google Scholar
  2. Allen, E.B., and M.F. Allen. 1980. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming. Journal of Applied Ecology 17: 139–147.CrossRefGoogle Scholar
  3. Allen, E.B., M.F. Allen, D.J. Helm, J.M. Trappe, R. Molina, and E. Rincon. 1995. Patterns and regulation of arbuscular and ectomycorrhizal plant and fungal diversity. Plant and Soil 170: 47–62.CrossRefGoogle Scholar
  4. Allen, M.F. 1987. Re-establishment of mycorrhizas on Mount St. Helens: Migration vectors. Transactions of the British Mycological Society 88: 413–417.CrossRefGoogle Scholar
  5. ———. 1988. Re-establishment of VA mycorrhizae following severe disturbance: Comparative patch dynamics of a shrub desert and subalpine volcano. Proceedings of the Royal Society of Edinburgh 94B: 63–71.Google Scholar
  6. ———. 1991. The ecology of mycorrhizae. New York: Cambridge University Press.Google Scholar
  7. Allen, M.F., and E.B. Allen. 1991. Mycorrhizae and plant community development: Mechanisms and patterns. In The fungal community, ed. G.C. Carroll and D.T. Wicklow, 455–479. New York: Marcel Dekker.Google Scholar
  8. ———. 2017. Mycorrhizal mediation of soil fertility amidst nitrogen eutrophication and climate change. Chapter 12. In Mycorrhizal mediation of soil: Fertility, structure, and carbon storage, ed. N.C. Johnson, C. Gehring, and J. Jansa, 213–231. Amsterdam: Elsevier Press.CrossRefGoogle Scholar
  9. Allen, M.F., and J.A. MacMahon. 1988. Direct VA mycorrhizal inoculation of colonizing plants by pocket gophers (Thomomys talpoides) on Mount St. Helens. Mycologia 80: 754–756.Google Scholar
  10. Allen, M.F., J.A. MacMahon, and D.C. Andersen. 1984. Reestablishment of Endogonaceae on Mount St. Helens: Survival of residuals. Mycologia 76: 1031–1038.CrossRefGoogle Scholar
  11. Allen, M.F., L.E. Hipps, and G.L. Wooldridge. 1989. Wind dispersal and subsequent establishment of VA mycorrhizal fungi across a successional arid landscape. Landscape Ecology 2: 165–171.CrossRefGoogle Scholar
  12. Allen, M.F., C. Crisafulli, C.F. Friese, and S. Jeakins. 1992. Reformation of mycorrhizal symbioses on Mount St. Helens, 1980–1990: Interactions of rodents and mycorrhizal fungi. Mycological Research 96: 447–453.CrossRefGoogle Scholar
  13. Allen, M.F., E.B. Allen, C.N. Dahm, and F.S. Edwards. 1993. Preservation of biological diversity in mycorrhizal fungi: Importance and human impacts. In International symposium on human impacts on self-recruiting populations, ed. G. Sundnes, 81–108. Trondheim: The Royal Norwegian Academy of Sciences.Google Scholar
  14. Allen, M.F., W. Swenson, J.I. Querejeta, L.M. Egerton-Warburton, and K.K. Treseder. 2003. Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology 41: 271–303.CrossRefGoogle Scholar
  15. Allen, M.F., C.M. Crisafulli, S.J. Morris, L.M. Egerton-Warburton, J.A. MacMahon, and J.M. Trappe. 2005. Mycorrhizae and Mount St. Helens: Story of a symbiosis. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 221–232. New York: Springer.CrossRefGoogle Scholar
  16. Antos, J.A., and D.B. Zobel. 2005. Plant responses in forests of the tephra-fall zone. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 47–58. New York: Springer.CrossRefGoogle Scholar
  17. Birchfield, M.K. 2011. Thirty years of conifer establishment in volcanic primary succession at Mount St. Helens: Patterns and factors affecting establishment. M.S. thesis. Pullman: Washington State University.Google Scholar
  18. Bledsoe, C.S., M.F. Allen, and D. Southworth. 2014. Beyond mutualism: Complex mycorrhizal interactions. Progress in Botany 75: 311–334.Google Scholar
  19. Clements, F.E. 1916. Plant succession: An analysis of the development of vegetation. Publication no. 242. Washington, DC: Carnegie Institution.Google Scholar
  20. Clemmensen, K.E., A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekbald, H. Wallander, J. Stenlid, R.D. Finlay, D.A. Wardle, and B.D. Lindahl. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339: 1615–1618.CrossRefGoogle Scholar
  21. Cooper, W.S. 1923. The recent ecological history of Glacier Bay, Alaska: The present vegetation cycle. Ecology 4: 223–246.CrossRefGoogle Scholar
  22. Cowles, H.C. 1899. The ecological relations of vegetation on the sand dunes of Lake Michigan. Botanical Gazette 27: 95–117. 167–202, 281–308, 361–391.CrossRefGoogle Scholar
  23. Crisafulli, C.M., J.A. MacMahon, and R.R. Parmenter. 2005. Small-mammal survival and colonization on the Mount St. Helens volcano: 1980–2002. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 199–218. New York: Springer.CrossRefGoogle Scholar
  24. Crisafulli, C.M., F.J. Swanson, J.J. Halvorson, and B. Clarkson. 2015. Volcano ecology: Disturbance characteristics and assembly of biological communities. In Encyclopedia of volcanoes, ed. H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer, and J. Stix, 2nd ed., 1265–1284. London: Elsevier Publishing.CrossRefGoogle Scholar
  25. Dale, V.H., A. Lugo, J. MacMahon, and S.T.A. Pickett. 1998. Ecosystem management in the context of large, infrequent disturbances. Ecosystems 1: 546–557.CrossRefGoogle Scholar
  26. Dale, V.H., F.J. Swanson, and C.M. Crisafulli. 2005. Disturbance, survival, and succession: Understanding ecological responses to the 1980 eruption of Mount St. Helens. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 3–12. New York: Springer.CrossRefGoogle Scholar
  27. Edmonds, R.L., ed. 1982. Analysis of coniferous forest ecosystems in the western United States, US/IBP Synthesis Series 14. Stroudsburg: Hutchinson Ross Publishing Company.Google Scholar
  28. Franklin, J.F., and C.T. Dyrness. 1973. Natural vegetation of Oregon and Washington. General Technical Report PNW-8. Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.Google Scholar
  29. Franklin, J.F., J.A. MacMahon, F.J. Swanson, and J.R. Sedell. 1985. Ecosystem responses to the eruption of Mount St. Helens. National Geographic Research 1: 198–216.Google Scholar
  30. Franklin, J.F., T.A. Spies, R. Van Pelt, A.B. Carey, D.A. Thornburgh, D.R. Berg, D.B. Lindenmayer, M.E. Harmon, W.S. Keeton, D.C. Shaw, K. Bible, and J.Q. Chen. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399–423.CrossRefGoogle Scholar
  31. Freund, J.A., J.F. Franklin, A.J. Larson, and J.A. Lutz. 2014. Multi-decadal establishment for single-cohort Douglas-fir forests. Canadian Journal of Forest Research 44: 1068–1078.CrossRefGoogle Scholar
  32. Garrett, S.D. 1970. Pathogenic root-infecting fungi. Cambridge: Cambridge University Press.Google Scholar
  33. Halvorson, J.J., and J.L. Smith. 2009. Carbon and nitrogen accumulation and microbial activity in Mount St. Helens pyroclastic substrates after 25 years. Plant and Soil 315: 211–228.CrossRefGoogle Scholar
  34. Halvorson, J.J., J.L. Smith, and A.C. Kennedy. 2005. Lupine effects on soil development and function during early primary succession at Mount St. Helens. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 243–254. New York: Springer.CrossRefGoogle Scholar
  35. Helm, D.J., and E.B. Allen. 1995. Vegetation chronosequence near Exit Glacier, Kenai Fjords National Park, Alaska. Arctic and Alpine Research 27: 246–257.CrossRefGoogle Scholar
  36. Hernandez, R.R., and M.F. Allen. 2013. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with soil ecosystem observatory. New Phytologist 200: 547–557.CrossRefGoogle Scholar
  37. Janos, D.P. 1980. Mycorrhizae influence tropical succession. Biotropica 12: 56–64.CrossRefGoogle Scholar
  38. MacMahon, J.A. 1981. Successional processes: Comparisons among biomes with special reference to probable roles of and influences on animals. In Forest succession, concepts and application, ed. D.C. West, H.H. Shugart, and D.B. Botkin, 277–304. New York: Springer-Verlag.CrossRefGoogle Scholar
  39. MacMahon, J.A., and N. Warner. 1984. Dispersal of mycorrhizal fungi: Processes and agents. In VA mycorrhizae and reclamation of arid and semi-arid lands, Scientific Report Number SA1261, ed. S.E. Williams and M.F. Allen, 28–41. Laramie: Wyoming Agricultural Experiment Station.Google Scholar
  40. MacMahon, J.A., R.R. Parmenter, K.A. Johnson, and C.M. Crisafulli. 1989. Small mammal recolonization on the Mount St. Helens volcano: 1980–1987. American Midland Naturalist 122: 365–387.CrossRefGoogle Scholar
  41. Maser, C., J.M. Trappe, and R.A. Nussbaum. 1978. Fungal–small mammal interrelationships with emphasis on Oregon coniferous forest. Ecology 59: 799–809.CrossRefGoogle Scholar
  42. Molina, R., H. Massicotte, and J.M. Trappe. 1992. Specificity phenomena in mycorrhizal symbiosis: Community-ecological consequences and practical implications. In Mycorrhizal functioning: An integral plant-fungal process, ed. M.F. Allen, 357–423. New York: Chapman & Hall.Google Scholar
  43. Mosse, B. 1977. Plant growth responses to vesicular-arbuscular mycorrhiza. X. Responses of Stylosanthes and maize to inoculation in unsterilized soil. New Phytologist 78: 277–288.CrossRefGoogle Scholar
  44. Nicolson, T.H. 1960. Mycorrhiza in the Gramineae. II. Development in different habitats, particularly sand dunes. Transactions of the British Mycological Society 43: 132–145.CrossRefGoogle Scholar
  45. Poage, N.J., P.J. Weisberg, P.C. Impara, J.C. Tappeiner, and T.S. Sensenig. 2009. Influences of climate, fire, and topography on contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon. Canadian Journal of Forest Research 39: 1518–1530.CrossRefGoogle Scholar
  46. Segura, G., L.B. Brubaker, J.F. Franklin, T.M. Hinckley, D.A. MacGuire, and G. Wright. 1994. Recent mortality and decline in mature Abies amabilis: The interaction between site factors and tephra deposition from Mount St. Helens. Canadian Journal of Forest Research 24: 1112–1122.CrossRefGoogle Scholar
  47. Smith, J.E., K.A. Johnson, and E. Cazares. 1998. Vesicular mycorrhizal colonization of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 7: 279–285.CrossRefGoogle Scholar
  48. Swanson, F.J., and J.J. Major. 2005. Physical events, environments, and geological ecological interactions at Mount St. Helens: March 1980–2004. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 27–44. New York: Springer.CrossRefGoogle Scholar
  49. Swanson, F.J., C.M. Crisafulli, and D.K. Yamaguchi. 2005. Geological and ecological settings of Mount St. Helens before May 18, 1980. In Ecological responses to the 1980 eruption of Mount St. Helens, ed. V.H. Dale, F.J. Swanson, and C.M. Crisafulli, 13–26. New York: Springer.CrossRefGoogle Scholar
  50. Titus, J.H., and R. del Moral. 1998. Vesicular-arbuscular mycorrhizae influence Mount St. Helens pioneer species in greenhouse experiments. Oikos 81: 495–510.CrossRefGoogle Scholar
  51. Titus, J.H., S. Whitcomb, and H.J. Pitoniak. 2007. Distribution of arbuscular mycorrhizae in relation to microsites on primary successional substrates on Mount St. Helens. Canadian Journal of Botany 85: 941–948.CrossRefGoogle Scholar
  52. Treseder, K.K., and M.F. Allen. 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytologist 155: 507–515.CrossRefGoogle Scholar
  53. van der Heijden, M.G.A., and I.R. Sanders. 2002. Mycorrhizal ecology. New York: Springer-Verlag.Google Scholar
  54. Yamaguchi, D.K., and D.B. Lawrence. 1993. Tree-ring evidence for 1842–1843 eruptive activity at the Goat Rocks dome, Mount St. Helens, Washington. Bulletin of Volcanology 55: 264–272.CrossRefGoogle Scholar
  55. Zimmer, K., N.A. Hynson, G. Gebauer, E.B. Allen, M.F. Allen, and D.J. Read. 2007. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaeae) and in orchids. New Phytologist 175: 166–175.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Michael F. Allen
    • 1
  • Matthew R. O’Neill
    • 2
  • Charles M. Crisafulli
    • 3
  • James A. MacMahon
    • 4
  1. 1.Departments of Plant Pathology and Microbiology, Center for Conservation BiologyUniversity of California-RiversideCaliforniaUSA
  2. 2.Department of BiologyUniversity of California-RiversideRiversideUSA
  3. 3.U.S. Department of Agriculture, Forest ServicePacific Northwest Research Station, Mount St. Helens National Volcanic MonumentWashington, DCUSA
  4. 4.Department of Biology and Ecology CenterUtah State UniversityLoganUSA

Personalised recommendations