Skip to main content

Escherichia coli

  • Chapter
  • First Online:
Foodborne Microbial Pathogens

Part of the book series: Food Science Text Series ((FSTS))

Abstract

Most E scherichia coli are a harmless inhabitant of the intestinal tract, and only a small percentage of strains are considered pathogenic. However, a recent surge in the enterohemorrhagic E. coli (EHEC), a highly virulent subset of Shiga toxin-producing E. coli (STEC) outbreaks, suggests a possible increased horizontal or vertical transfer of pathogenic genes among bacterial species. There are six virotypes of E. coli (EHEC, EPEC, ETEC, EIEC, DAEC, and EAEC), of which EHEC, EPEC, and ETEC are known to cause severe disease worldwide. Increased insight into their genetic and phenotypic properties of virulence factors and their pathogenic mechanisms should help in formulating appropriate preventive or therapeutic measures. The common themes shared by all E. coli virotypes include the following: they adhere to the epithelial cells and cause damage to the cells by initiating signaling events that lead to blockage of protein synthesis, alter the cytoskeletal structure leading to attachment and effacement lesion, affect ion pumps, increase fluid loss, or cause cell death. In recent years, however, the research focus is geared more toward EHEC group because of their continued association with serious foodborne outbreaks from a wide variety of foods, including fruits, vegetables, meats, and dairy products. Analysis of recent outbreak strains indicates association of Stx2 and Eae to be the most important virulence factor of EHEC/STEC, causing hemorrhagic colitis (HC), severe hemolytic uremic syndrome (HUS), and kidney damage. Association of this pathogen with fresh vegetables presents a serious problem because these products are minimally processed and, apparently, the processing conditions are inadequate for complete removal or inactivation. Furthermore, these organisms probably have developed strategies to utilize nutrients from plants for prolonged survival inside the plant tissues, and they are resistant to washing and disinfections. Diarrheal diseases are preventable by adopting proper sanitary condition during the preparation of food, by thorough cooking, and by avoiding foods that might be the potential source of the organism. Dehydration and electrolyte loss result from diarrhea, which can be fatal; thus, hydration is the most important therapy against diarrheal diseases. The most severely affected patients suffering from EHEC/STEC require blood transfusion and dialysis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Readings

  1. Bergan, J., Dyve Lingelem, A.B., Simm, R., Skotland, T. and Sandvig, K. (2012) Shiga toxins. Toxicon 60, 1085–1107.

    Article  CAS  Google Scholar 

  2. Bettelheim, K.A. and Goldwater, P.N. (2013) Shigatoxigenic Escherichia coli in Australia: a review. Rev Med Microbiol 24, 22–30.

    Article  Google Scholar 

  3. Beutin, L. (2006) Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. J Vet Med Series B 53, 299–305.

    Article  CAS  PubMed  Google Scholar 

  4. Beutin, L. and Martin, A. (2012) Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J Food Prot 75, 408–418.

    Article  PubMed  Google Scholar 

  5. Clarke, S.C., Haigh, R.D., Freestone, P.P.E. and Williams, P.H. (2003) Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 16, 365–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M. and Finlay, B.B. (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26, 822–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Estrada-Garcia, T. and Navarro-Garcia, F. (2012) Enteroaggregative Escherichia coli pathotype: a genetically heterogeneous emerging foodborne enteropathogen. FEMS Immunol Med Microbiol 66, 281–298.

    Article  CAS  Google Scholar 

  8. Feng, P., Weagant, S.D. and Jinneman, K. (2014) BAM: diarrheagenic Escherichia coli. US Food and Drug Administration.

    Google Scholar 

  9. Feng, P., Weagant, S.D. and Monday, S.R. (2001) Genetic analysis for virulence factors in Escherichia coli O104: H21 that was implicated in an outbreak of hemorrhagic colitis. J Clin Microbiol 39, 24–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fleckenstein, J.M., Hardwidge, P.R., Munson, G.P., Rasko, D.A., Sommerfelt, H. and Steinsland, H. (2010) Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12, 89–98.

    Article  CAS  PubMed  Google Scholar 

  11. Gyles, C.L. (2007) Shiga toxin-producing Escherichia coli: An overview. J Anim Sci 85, E45–62.

    Article  CAS  PubMed  Google Scholar 

  12. Hayward, R.D., Leong, J.M., Koronakis, V. and Campellone, K.G. (2006) Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nat Rev Microbiol 4, 358–370.

    Article  CAS  PubMed  Google Scholar 

  13. Hebbelstrup Jensen, B., Olsen, K.E.P., Struve, C., Krogfelt, K.A. and Petersen, A.M. (2014) Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 27, 614–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Isidean, S.D., Riddle, M.S., Savarino, S.J. and Porter, C.K. (2011) A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 29, 6167–6178.

    Article  CAS  PubMed  Google Scholar 

  15. Johannes, L. and Romer, W. (2010) Shiga toxins - from cell biology to biomedical applications. Nat Rev Microbiol 8, 105–116.

    Article  CAS  PubMed  Google Scholar 

  16. Kaper, J.B., Nataro, J.P. and Mobley, H.L.T. (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–140.

    Article  CAS  PubMed  Google Scholar 

  17. Karmali, M.A., Mascarenhas, M., Shen, S., Ziebell, K., Johnson, S., Reid-Smith, R., Isaac-Renton, J., Clark, C., Rahn, K. and Kaper, J.B. (2003) Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41, 4930–4940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Konowalchuk, J., Speirs, J. and Stavric, S. (1977) Vero response to a cytotoxin of Escherichia coli. Infect Immun 18, 775–779.

    Google Scholar 

  19. Krüger, A. and Lucchesi, P.M.A. (2015) Shiga toxins and stx phages: highly diverse entities. Microbiology 161, 451–462.

    Article  CAS  PubMed  Google Scholar 

  20. McWilliams, B.D. and Torres, A.G. (2014) EHEC adhesins. Microbiol Spectrum 2, EHEC-0003-2013.

    Google Scholar 

  21. Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.

    Google Scholar 

  22. Ochoa, T.J. and Contreras, C.A. (2011) Enteropathogenic Escherichia coli infection in children. Curr Opin Infect Dis 24, 478–483.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qadri, F., Svennerholm, A.-M., Faruque, A.S.G. and Sack, R.B. (2005) Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18, 465–483.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Servin, A.L. (2005) Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev 18, 264–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shulman, S.T., Friedmann, H.C. and Sims, R.H. (2007) Theodor Escherich: The first pediatric infectious diseases physician? Clin Infect Dis 45, 1025–1029.

    Article  PubMed  Google Scholar 

  26. Sperandio, V. and Pacheco, A.R. (2012) Shiga toxin in enterohemorrhagic E. coli: Regulation and novel antivirulence strategies. Front Cell Infect Microbiol 2.

    Google Scholar 

  27. van den Beld, M.J.C. and Reubsaet, F.A.G. (2012) Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur J Clin Microbiol Infect Dis 31, 899–904.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, A.K. (2018). Escherichia coli . In: Foodborne Microbial Pathogens. Food Science Text Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7349-1_14

Download citation

Publish with us

Policies and ethics