Skip to main content

Interpretive Reading of the Antibiogram: A Tool for Clinical Practice

  • Chapter
  • First Online:
Sepsis

Abstract

Antibiotic resistance is a worldwide problem. The antibiotic resistance crisis has been attributed to the overuse and misuse of these medications, as well as a lack of new drug development by the pharmaceutical industry. The complexity of the processes that contribute to the emergence and dissemination of resistance cannot be overemphasized. Interpretive reading of antibiogram allow to understand epidemiological data about resistance mechanisms, to establish measurements for the control of infections, and to set policies on the use of antimicrobials. The lack of basic knowledge on this topic has prompted us to write this chapter for the understanding of all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torres C, Cercenado E. Interpretive reading antimicrobial susceptibility of gram-positive cocci. Infect Dis Clin. 2010;28(8):541–53.

    Google Scholar 

  2. Rock I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The overall threat of antimicrobial resistance: science for intervention. New Microb New Infect. 2015;6:22–9.

    Article  Google Scholar 

  3. Canton R. Interpretive reading antimicrobial susceptibility: a clinical need. Infect Microbiol Dis Clin. 2010;28(6):375–85.

    Google Scholar 

  4. Poupard JA, Rittenhouse SF, Walsh LR. The evolution of antimicrobial susceptibility testing methods. In: Poupard JA, Walsh LR, Kleger B, editors. Antimicrobial susceptibility testing: critical issues for the 90s [Internet]. Boston, MA: Springer US; 1994. p. 3–14. https://doi.org/10.1007/978-1-4757-9206-5-2.

    Chapter  Google Scholar 

  5. Rosewell KT, Baker BE. A method for confirming organochlorine pesticide residues in wildlife. Bull Environ Toxicol Contam. 1979;21(4-5):470–7.

    Article  CAS  Google Scholar 

  6. Reller LB, Weinstein MP, Peterson LR, Hamilton JD, Baron EJ, Tompkins LS, et al. Role of clinical microbiology laboratories in the management and control of infectious diseases and the delivery of health care. Clin Infect Dis. 2001;32(4):605–10.

    Article  Google Scholar 

  7. Guangzhou R, Ignacio Alós J, Baquero F, Calvo J, Campos J, Castillo J, et al. Recommendations for selecting antimicrobial sensitivity study in vitro with automatic and semiautomatic systems. Infect Dis Clin. 2007;25(6):394–400.

    Google Scholar 

  8. Ferraro MJ. Should we reevaluate antibiotic breakpoints? Infect Dis Clin. 2001;33(Suppl. 3):S227–9.

    Article  CAS  Google Scholar 

  9. Cercenado E, Saavedra-Lozano J. Interpretation of susceptibility testing: general concepts (I). Antibiogram A. 2009;7(4):214–7.

    Google Scholar 

  10. European Committee on Antimicrobial Susceptibility Testing (EUCAST Expert rules in antimicrobial susceptibility testing, 2008) 2008. http://www.eucast.org/fileadmin/src/media/PDFs/4ESCMID_Library/3Publications/EUCAST_Documents/Other_Documents/EUCAST_Expert_rules_final_April_20080407.pdf

  11. Courvalin P. Interpretive reading of in vitro antibiotic susceptibility tests (the antibiogramme). Infect Microbiol Clin. 1996;2:S26–34.

    Article  CAS  Google Scholar 

  12. Livermore DM, Winstanley TG, Shannon KP. Interpretative reading: recognizing the unusual and inferring resistance from resistance phenotypes mechanisms. J Antimicrob Chemother. 2001;48(Suppl 1):87–102.

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez A, de la Fuente CG, Saez J, Valdezate S. Methods for bacterial identification in microbiology laboratory [Internet]. SEIMC; 2010. https://www.seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimientomicrobiologia37.pdf

  14. Vignoli R, Seija V. Chapter 35: Main mechanisms of antibiotic resistance. In: Issues of bacteriology and medical virology. 2nd edn. Book FEFMUR office; 2006. p. 1–680.

    Google Scholar 

  15. Tafur JD, Torres JA, Villegas MV. Mechanisms antibiotic resistance in gram negative bacteria. Infect. 2008;12(3):227–32.

    Google Scholar 

  16. Porres-Osante N. Detection and genetic bases beta-lactamase AmpC and carbapenemases in clinical isolates of Enterobacteriaceae and diners [Internet]. Ph.D. thesis, Rioja University; 2015. file:///C:/Users/Cindy%20Arteta/Downloads/Dialnet-DeteccionYBasesGeneticasDeBetalactamasasAmpCYCarba-45462.pdf.

    Google Scholar 

  17. Suarez C. Beta-lactam antibiotics F. Gudiol. Infect Dis Clin. 2009;27(2):116–29.

    Google Scholar 

  18. Bush K, Jacoby GA. Updated functional classification of lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.

    Article  CAS  PubMed  Google Scholar 

  19. Navarro F, Calvo J, Guangzhou R, Fernandez-Basin F, Mirelis B. Detection phenotypic resistance mechanisms in gram-negative microorganisms. Infect Dis Clin. 2011;29(7):524–34.

    Google Scholar 

  20. Jacoby GA. AmpC-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Navarro F, Miró E, Mirelis B. Interpretive reading of the antibiogram of enterobacteria. Infect Dis Clin. 2010;28(9):638–45.

    Google Scholar 

  22. Mata C, Miró E, Rivera A, Mirelis B, Coll P, Navarro F. Prevalence of acquired AmpC β-lactamases in Enterobacteriaceae lacking ampC inducible chromosomal genes at a Spanish hospital from 1999 to 2007. Clin Microbiol Infect. 2010;16(5):472–6.

    Article  CAS  PubMed  Google Scholar 

  23. Jacoby GA, Munoz-Price LS. The new β-lactamases. N Engl J Med. 2005;352(4):380–91.

    Article  CAS  PubMed  Google Scholar 

  24. Datta N, Kontomichalou P. penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208(5007):239–41.

    Article  CAS  PubMed  Google Scholar 

  25. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64(Suppl. 1):i3–10.

    Article  CAS  PubMed  Google Scholar 

  26. Amos GCA, Hawkey PM, Gaze WH, Wellington MS. Waste water effluent contributes to the dissemination of CTX-M-15 in the environment naturally. J Antimicrob Chemother. 2014;69(7):1785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curiao T, Morosini MI, Ruiz-Garbajosa P, Robustillo A, Baquero F, Coque TM, et al. Emergence of blaKPC-3-Tn4401a associated with a pKPN3/4-like ST384 and ST388 plasmid within Klebsiella pneumoniae clones in Spain. J Antimicrob Chemother. 2010;65(8):1608–14.

    Article  CAS  PubMed  Google Scholar 

  28. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228–36.

    Article  CAS  PubMed  Google Scholar 

  29. Patel G, Bonomo RA. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48. http://journal.frontiersin.org/article/10.3389/fmicb.2013.00048/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother. 2008;52(3):1028–33.

    Article  CAS  PubMed  Google Scholar 

  31. Cifuentes M, Garcia P, San Martin P, Silva F, Zuniga J, Reyes S, et al. First case detection blaKpc in Chile: from Italy to a public hospital in Santiago. Rev Chilena Infectol. 2012;29(2):224–8.

    Article  PubMed  Google Scholar 

  32. Vila J, Marco F. Interpretive reading antimicrobial susceptibility of gram-negative bacilli nonfermenters. Infect Dis Clin. 2010;28(10):726–36.

    Google Scholar 

  33. Shen J, Pan Y, Fang Y. Role of the outer membrane protein OprD2 in carbapenem-resistance mechanisms of Pseudomonas aeruginosa. PLoS One. 2015;10(10):E0139995.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mandell GL, Bennett J, Dolin R. Infectious diseases: acquired immunodeficiency syndrome. [Internet]. London: Elsevier Health Sciences Spain; 2012. http://www.123library.org/book_details/?id=54681

    Google Scholar 

  35. Molina Cordero JE, Palomino J, Pachón J. Aminoglycosides and polymyxin. Infect Dis Clin. 2009;27(3):178–88.

    Google Scholar 

  36. Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol. 2006;70(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  37. Pigrau C. Oxazolidinones and glycopeptides. Infect Dis Clin. 2003;21(3):157–65.

    Google Scholar 

  38. Alós J-I. Quinolones. Infect Dis Clin. 2003;21(5):261–8.

    Google Scholar 

  39. World Health Organization, editor. Antimicrobial resistance: a global report on surveillance. Geneva: World Health Organization; 2014. p. 232.

    Google Scholar 

  40. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the infectious diseases society of America. Clin Infect Dis. 2008;46(2):155–64.

    Article  PubMed  Google Scholar 

  41. European Centre for Disease Prevention and Control, editor. The bacterial challenge, time to react: a call to narrow the gap between multidrug-resistant bacteria in the EU and the development of new antibacterial agents. Stockholm: ECDC; 2009. p. 42. ECDC/EMEA joint technical report

    Google Scholar 

  42. Klevens RM. Invasive methicillin-resistant Staphylococcus aureus: infections in the United States. JAMA. 2007;298(15):1763.

    Article  CAS  PubMed  Google Scholar 

  43. CDC. The antibiotic resistance Threats in the United States, 2013 [Internet]. 2013. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

  44. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146(3713):837.

    Article  CAS  Google Scholar 

  45. Davies J, Davies D. Origins and evolution of antibiotic resistance. Rev Microbiol Mol Biol. 2010;74(3):417–33.

    Article  CAS  Google Scholar 

  46. Hvistendahl M. China takes aim at rampant antibiotic resistance. Science. 2012;336(6083):795.

    Article  CAS  PubMed  Google Scholar 

  47. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and Its Implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355–62.

    Article  PubMed  Google Scholar 

  48. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.

    Article  PubMed  Google Scholar 

  49. Zaidi AK, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA. Hospital-acquired infections neonatal in developing countries. Lancet. 2005;365(9465):1175–88.

    Article  PubMed  Google Scholar 

  50. Waters D, Jawad Ahmad IA, Lukšić I, Nair H, Zgaga L, et al. Aetiology of community-acquired neonatal sepsis in low and middle income countries. J Glob Health. 2011;1(2):154–70.

    PubMed  PubMed Central  Google Scholar 

  51. AFI SA, FSR MA, Zaidi AK. Pan-resistant acinetobacter infection in neonates in Karachi, Pakistan. J Infect Dev Ctries. 2010;4(1):30–7.

    Google Scholar 

  52. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Stewart CD, et al. Novel carbapenem-hydrolyzing-lactamase, KPC-1, from carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perovic O, Chetty S, Iyaloo V. Antimicrobial resistance of Klebsiella pneumoniae and Staphylococcus aureus at sentinel sites in South Africa, San Francisco; 9–12 Sept 2014.

    Google Scholar 

  54. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new gene metallo-B-lactamase, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lowman W, Sriruttan C, Nana T, Bosman N, Duse A, Venturas J, et al. NDM-1 has arrived: first report of a carbapenem resistance mechanism in South Africa. South Afr Med J. 2011;101(12):873–5.

    CAS  Google Scholar 

  57. Hanefeld J, Horsfall D, Lunt N, Smith R. Medical tourism: a cost benefit or to the NHS? PLoS One. 2013;8(10):e70406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Datta S, Wattal C, Goel N, Oberoi JK, Raveendran R, Prasad KJ. A ten year analysis of multi-drug resistant blood stream infections Escherichia coli caused by Klebsiella pneumoniae and in a tertiary care hospital. Indian J Med Res. 2012;135(6):907–12.

    PubMed  PubMed Central  Google Scholar 

  59. Anupurba S, Sen MR, Nath G. BM Sharma, AK Gulati, TM Mohapatra. Prevalence of methicillin resistant Staphylococcus aureus in a tertiary referral hospital in eastern Uttar Pradesh. Indian J Med Microbiol. 2003;21(1):49–51.

    CAS  PubMed  Google Scholar 

  60. Tato M, Coque TM, Rucz-Garbajosa P, Painted V, Cobo J, Sader HS, et al. Clonal complex plasmid and epidemiology in the first outbreak of Enterobacteriaceae VIM-1 infection involving metallo-B-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007;45(9):1171–8.

    Article  CAS  PubMed  Google Scholar 

  61. Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis. 2000;31(Suppl. 2):S24–8.

    Article  CAS  PubMed  Google Scholar 

  62. Chung M, Antignac A, Kim C, Tomasz A. Comparative study of the susceptibilities of major epidemic clone of methicillin-resistant Staphylococcus aureus to oxacillin and to the new broad-spectrum cephalosporin ceftobiprole. Antimicrob Agents Chemother. 2008;52(8):2709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Croes S, Beisser PS, Terporten PH, Neef C, Deurenberg RH, Stobberingh EE. Diminished in vitro antibacterial activity of oxacillin against clinical isolates of borderline oxacillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2010;16(7):979–85.

    Article  CAS  PubMed  Google Scholar 

  64. CLSI. Performance standards for antimicrobial susceptibility testing. Twentieth Informational Supplement. Doc CLSI M100-S20. 2014.

    Google Scholar 

  65. Stevens DL. The role of vancomycin in the treatment paradigm. Clin Infect Dis. 2006;42(Suppl 1):S51–7.

    Article  CAS  PubMed  Google Scholar 

  66. Howden BP, Johnson PDR, Charles PGP, Grayson ML. Failure of vancomycin for treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2004;39(10):1544.

    Article  PubMed  Google Scholar 

  67. Moise-Broder PA, Sakoulas G, Eliopoulos GM, Schentag JJ, Forrest A, Moellering RC. Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis. 2004;38(12):1700–5.

    Article  CAS  PubMed  Google Scholar 

  68. van Hal SJ, Lodise TP, Paterson DL. The clinical significance of inhibitory concentration in vancomycin minimum Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012;54(6):755–71.

    Article  PubMed  Google Scholar 

  69. Cercenado E, Vicente MF, Diaz MD, Sanchez-Carrillo C, Sánchez-Rubiales M. Characterization of clinical isolates of beta-lactamase-negative, highly ampicillin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1996;40(10):2420–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Field R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R. Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain. Int J Antimicrob Agents. 2000;15(3):221–6.

    Article  Google Scholar 

  71. Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M, et al. Acquired carbapenemases in gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect. 2010;16(2):112–22.

    Article  CAS  PubMed  Google Scholar 

  72. Walsh TR. Emerging carbapenemases: a perspective overall. Int J Antimicrob Agents. 2010;36:S8–14.

    Article  CAS  PubMed  Google Scholar 

  73. Nicolau CJ, Oliver A. Carbapenemases species of the genus Pseudomonas. Infect Dis Clin. 2010;28:19–28.

    Google Scholar 

  74. Mirelis B, Rivera A, Miró E, Mesa RJ, Navarro F, Coll P. A single phenotypic method for differentiation and chromosomal AmpC between acquired beta-lactamases in Escherichia coli. Infect Dis Clin. 2006;24(6):370–2.

    Google Scholar 

  75. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.

    Article  PubMed  Google Scholar 

  76. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014;12(10):1221–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2001;45(12):3548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paterson DL, Ko W-C, Von Gottberg A, Mohapatra S, Casellas JM, Goossens M, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum-lactamases. Clin Infect Dis. 2004;39(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  79. Tumbarello M, Viale P, Viscoli C, Trecarichi MS, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae K. pneumoniae carbapenemase-producing: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–50.

    Article  CAS  PubMed  Google Scholar 

  80. Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis. 2015;2(2):ofv050.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Psichogiou M, Tassios PT, Avlamis A, Stefanou I, Kosmidis C, Platsouka E, et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother. 2007;61(1):59–63.

    Article  PubMed  Google Scholar 

  82. Daikos GL, Panagiotakopoulou A, Tzelepi E, Loli A, Tzouvelekis LS, Miriagou V. Activity of imipenem against VIM metallo-β-1-lactamase-producing Klebsiella pneumoniae in the murine thigh infection model. Clin Microbiol Infect. 2007;13(2):202–5.

    Article  CAS  PubMed  Google Scholar 

  83. Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the activity of human simulated, high-dose, prolonged infusion of meropenem against Klebsiella pneumoniae producing the KPC carbapenemase versus that against Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2010;54(2):804–10.

    Article  CAS  PubMed  Google Scholar 

  84. Bulik CC, Nicolau DP. In vivo efficacy of simulated human dosing regimens of prolonged infusion doripenem-producing Klebsiella pneumoniae against carbapenemase. Antimicrob Agents Chemother. 2010;54(10):4112–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58(4):2322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pournaras S, Vrioni G, Neou E, Dendrinos J, Dimitroulia E, Poulou A, et al. Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time-kill assay. Int J Antimicrob Agents. 2011;37(3):244–7.

    Article  CAS  PubMed  Google Scholar 

  87. Hsu AJ, Tamma PD. Treatment of multidrug-resistant gram-negative infections in children. Clin Infect Dis. 2014;58(10):1439–48.

    Article  PubMed  Google Scholar 

  88. Hong JH, Clancy CJ, Cheng S, Shields RK, Chen L, Doi Y, et al. Characterization of porin expression in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae isolates identifies most susceptible to the combination of colistin and carbapenems. Antimicrob Agents Chemother. 2013;57(5):2147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Clancy CJ, Chen L, Hong JH, Cheng S, Hao B, Shields RK, et al. Mutations of the ompK36 porin gene and promoter sequence impact responses of type 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. Antimicrob Agents Chemother. 2013;57(11):5258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfrido Coronell-Rodríguez PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Coronell-Rodríguez, W., Arteta-Acosta, C., Dueñas-Castell, C. (2018). Interpretive Reading of the Antibiogram: A Tool for Clinical Practice. In: Ortiz-Ruiz, G., Dueñas-Castell, C. (eds) Sepsis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7334-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7334-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7332-3

  • Online ISBN: 978-1-4939-7334-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics