Skip to main content

Mapping the Abstractions of Forest Landscape Patterns

  • Chapter
  • First Online:
  • 1008 Accesses

Abstract

The evaluation of landscape patterns is necessary to explain the relationships between ecological processes and spatial patterns and between the processes and patterns and the factors that control them or that they control. For decades, landscape metrics have been used to measure and abstract landscape patterns. Since the emergence of FRAGSTATS in 1993, the measures and methods incorporated in this software have become widely used and are now a de facto standard tool for calculating landscape metrics. However, there are no special metrics unique to forest landscapes. The selection of metrics depends on the purpose of the study rather than on the land use or cover type. However, some metrics are more often used for forested landscapes (e.g., core area metrics). Forest landscape patterns are changing fast due to both natural and human disturbances. Remote sensing offers a rapid method of acquiring up-to-date information over a large geographical area and is therefore widely used as a source of the data needed for pattern assessment and the calculation of landscape metrics. However, to obtain meaningful results, correct preparation of the data is essential. In this chapter, we review the various metrics used to measure forest landscapes for different purposes. We deal with five main issues from the perspective of forest landscape patterns: (1) data preparation before the calculation of metrics (e.g., vector vs. raster data, scale, classification) and the associated uncertainties, (2) measurements of a landscape’s configuration and composition using metrics, (3) interpretation of the results, (4) possible uses of the outcomes, and (5) future perspectives (e.g., 3D and 4D landscape metrics).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah SA, Nakagoshi N (2007) Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For Ecol Manag 241(1–3):39–48. doi:10.1016/j.foreco.2006.12.016

    Article  Google Scholar 

  • Aguiar FC, Fernandes MR, Ferreira MT (2011) Riparian vegetation metrics as tools for guiding ecological restoration in riverscapes. Knowl Manag Aquat Ecosyst 402:21. doi:10.1051/Kmae/2011074

    Article  Google Scholar 

  • Albeke SE, Nibbelink NP, Mu L, Ellsworth DJ (2010) Measuring boundary convexity at multiple spatial scales using a linear “moving window” analysis: an application to coastal river otter habitat selection. Landsc Ecol 25(10):1575–1587. doi:10.1007/s10980-010-9528-4

    Article  Google Scholar 

  • Arnot C, Fisher PF, Wadsworth R, Wellens J (2004) Landscape metrics with ecotones: pattern under uncertainty. Landsc Ecol 19(2):181–195

    Article  Google Scholar 

  • Baker WL, Cai YM (1992) The R le-programs for multiscale analysis of landscape structure using the grass geographical information-system. Landsc Ecol 7(4):291–302. doi:10.1007/Bf00131258

    Article  Google Scholar 

  • Baker ME, Weller DE, Jordan TE (2006) Improved methods for quantifying potential nutrient interception by riparian buffers. Landsc Ecol 21(8):1327–1345. doi:10.1007/s10980-006-0020-0

    Article  Google Scholar 

  • Baker ME, Weller DE, Jordan TE (2007) Effects of stream map resolution on measures of riparian buffer distribution and nutrient retention potential. Landsc Ecol 22(7):973–992. doi:10.1007/s10980-007-9080-z

    Article  Google Scholar 

  • Baldwin DJB, Weaver K, Schnekenburger F, Perera AH (2004) Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation. Landsc Ecol 19(3):255–271

    Article  Google Scholar 

  • Baskent EZ (1999) Controlling spatial structure of forested landscapes: a case study towards landscape management. Landsc Ecol 14(1):83–97. doi:10.1023/A:1008071307848

    Article  Google Scholar 

  • Baskent EZ, Jordan GA (1996) Designing forest management to control spatial structure of landscapes. Landsc Urban Plan 34(1):55–74. doi:10.1016/0169-2046(95)00200-6

    Article  Google Scholar 

  • Batista T, Mendes P, Carvalho L, Vila-Vicosa C, Gomes CP (2012) Suitable methods for landscape evaluation and valorization: the third dimension in landscape metrics. Acta Bot Gallica 159(2):161–168. doi:10.1080/12538078.2012.696930

    Article  Google Scholar 

  • Berry JK (2007) Map analysis: understanding spatial patterns and relationships. GeoTec Media

    Google Scholar 

  • Blaschke T, Tiede D, Heurich M (2004) 3D landscape metrics to modelling forest structure and diversity based on laser scanning data. Remot Sens Spat Inform Sci 8:129–132

    Google Scholar 

  • Bogaert J, Van Hecke P, Salvador-Van Eysenrode D, Impens I (2000) Landscape fragmentation assessment using a single measure. Wildl Soc Bull 28(4):875–881

    Google Scholar 

  • Boots B, Csillag F (2006) Categorical maps, comparisons, and confidence. J Geogr Syst 8(2):109–118

    Article  Google Scholar 

  • Bregt AK, Denneboom J, Gesink HJ, Vanranden Y (1991) Determination of rasterizing error—a case-study with the soil map of the Netherlands. Int J Geogr Inf Syst 5(3):361–367. doi:10.1080/02693799108927861

    Article  Google Scholar 

  • Brown DG, Addink EA, Duh JD, Bowersox MA (2004) Assessing uncertainty in spatial landscape metrics derived from remote sensing data. Remot Sens Gis Accur Assessm:221–232

    Google Scholar 

  • Butler BJ, Swenson JJ, Alig RJ (2004) Forest fragmentation in the Pacific Northwest: quantification and correlations. For Ecol Manag 189(1–3):363–373. doi:10.1016/j.foreco.2003.09.013

    Article  Google Scholar 

  • Buyantuyev A, Wu JG (2007) Effects of thematic resolution on landscape pattern analysis. Landsc Ecol 22(1):7–13. doi:10.1007/s10980-006-9010-5

    Article  Google Scholar 

  • Cain DH, Riitters K, Orvis K (1997) A multi-scale analysis of landscape statistics. Landsc Ecol 12(4):199–212. doi:10.1023/A:1007938619068

    Article  Google Scholar 

  • Cardille JA, White JC, Wulder MA, Holland T (2012) Representative landscapes in the forested area of Canada. Environ Manag 49(1):163–173. doi:10.1007/s00267-011-9785-2

    Article  Google Scholar 

  • Chirici G, McRoberts RE, Winter S, Bertini R, Brandli UB, Asensio IA, Bastrup-Birk A, Rondeux J, Barsoum N, Marchetti M (2012) National forest inventory contributions to forest biodiversity monitoring. For Sci 58(3):257–268. doi:10.5849/forsci.12-003

    Google Scholar 

  • Clarke KC, Brass JA, Riggan PJ (1994) A cellular-automaton model of wildfire propagation and extinction. Photogramm Eng Remote Sens 60(11):1355–1367

    Google Scholar 

  • Congalton RG (1997) Exploring and evaluating the consequences of vector-to-raster and raster-to-vector conversion. Photogramm Eng Remote Sens 63(4):425–434

    Google Scholar 

  • Corona P, Chirici G, McRoberts RE, Winter S, Barbati A (2011) Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For Ecol Manag 262(11):2061–2069. doi:10.1016/j.foreco.2011.08.044

    Article  Google Scholar 

  • Corry RC (2005) Characterizing fine-scale patterns of alternative agricultural landscapes with landscape pattern indices. Landsc Ecol 20(5):591–608. doi:10.1007/s10980-004-5036-8

    Article  Google Scholar 

  • Cushman SA, McGariyal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Indic 8(5):691–703. doi:10.1016/j.ecolind.2007.12.002

    Article  Google Scholar 

  • De Chant T, Gallego AH, Saornil JV, Kelly M (2010) Urban influence on changes in linear forest edge structure. Landsc Urban Plan 96(1):12–18. doi:10.1016/j.landurbplan.2010.01.006

    Article  Google Scholar 

  • Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landsc Ecol 27(2):267–279. doi:10.1007/s10980-011-9694-z

    Article  Google Scholar 

  • Diaz-Varela ER, Marey-Perez MF, Rigueiro-Rodriguez A, Alvarez-Alvarez P (2009) Landscape metrics for characterization of forest landscapes in a sustainable management framework: potential application and prevention of misuse. Ann For Sci 66(3). doi:10.1051/Forest/2009004

  • Duveneck MJ, Scheller RM, White MA, Handler SD, Ravenscroft C (2014) Climate change effects on northern Great Lake (USA) forests: a case for preserving diversity. Ecosphere 5(2):23. doi:10.1890/Es13-00370.1

    Article  Google Scholar 

  • Echeverria C, Coomes D, Salas J, Rey-Benayas JM, Lara A, Newton A (2006) Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol Conserv 130(4):481–494. doi:10.1016/j.biocon.2006.01.017

    Article  Google Scholar 

  • Echeverria C, Coomes DA, Hall M, Newton AC (2008) Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol Model 212(3–4):439–449. doi:10.1016/j.ecolmodel.2007.10.045

    Article  Google Scholar 

  • Elkie PC, Rempel RS, Carr AP (1999) Patch analyst user’s manual—a tool for quantifying landscape structure. NWST Tech Manual TM-002

    Google Scholar 

  • Erdody TL, Moskal LM (2010) Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens Environ 114(4):725–737. doi:10.1016/j.rse.2009.11.002

    Article  Google Scholar 

  • Estreguil C, Caudullo G, de Rigo D, San Miguel J (2012) Forest landscape in Europe: pattern. Fragmentation and Connectivity, European Commission

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Fall A, Fall J (2001) A domain-specific language for models of landscape dynamics. Ecol Model 141(1–3):1–18. doi:10.1016/S0304-3800(01)00334-9

    Article  Google Scholar 

  • Farina A (2000) Landscapes ecology in action. Kluwer Academis Publishers, Dordrecht

    Book  Google Scholar 

  • Fassnacht KS, Cohen WB, Spies TA (2006) Key issues in making and using satellite-based maps in ecology: a primer. For Ecol Manag 222(1–3):167–181. doi:10.1016/j.foreco.2005.09.026

    Article  Google Scholar 

  • Fauth PT, Gustafson EJ, Rabenold KN (2000) Using landscape metrics to model source habitat for Neotropical migrants in the midwestern US. Landsc Ecol 15(7):621–631

    Article  Google Scholar 

  • Favier C, Dubois MA (2004) Reconstructing forest savanna dynamics in Africa using a cellular automata model, FORSAT. Lect Notes Comput Sci 3305:484–491

    Article  Google Scholar 

  • Fernandes MR, Aguiar FC, Ferreira MT (2011) Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landsc Urban Plan 99(2):166–177. doi:10.1016/j.landurbplan.2010.11.001

    Article  Google Scholar 

  • Fernandes MR, Aguiar FC, Ferreira MT, Pereira JMC (2013) Spectral separability of riparian forests from small and medium-sized rivers across a latitudinal gradient using multispectral imagery. Int J Remote Sens 34(7):2375–2401. doi:10.1080/01431161.2012.744491

    Article  Google Scholar 

  • Foody GM (1992) A fuzzy-sets approach to the representation of vegetation continua from remotely sensed data—an example from lowland heath. Photogramm Eng Remote Sens 58(2):221–225

    Google Scholar 

  • Forest Europe (2011) State of Europe’s Forests 2011. Status and Trends in Sustainable Forest Management in Europe FOREST EUROPE. UNECE and FAO

    Google Scholar 

  • Fortin MJ, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos 102(1):203–212

    Article  Google Scholar 

  • Fraser JS, He HS, Shifley SR, Wang WJ, Thompson FR (2013) Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design. Can J For Res 43(10):972–978. doi:10.1139/cjfr-2013-0190

    Article  Google Scholar 

  • Gaines KF, Porter DE, Punshon T, Brisbin IL (2005) A spatially explicit model of the wild hog for ecological risk assessment activities at the department of energy’s Savannah river site. Hum Ecol Risk Assess 11(3):567–589. doi:10.1080/10807030590949654

    Article  Google Scholar 

  • Gardner RH (1999) RULE: map generation and spatial analysis program. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer, New York, NY, pp 280–303

    Chapter  Google Scholar 

  • Gardner RH, Urban DL (2007) Neutral models for testing landscape hypotheses. Landsc Ecol 22(1):15–29. doi:10.1007/s10980-006-9011-4

    Article  Google Scholar 

  • Garmendia A, Arroyo-Rodriguez V, Estrada A, Naranjo E, Stoner K (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344. doi:10.1017/S0266467413000370

    Article  Google Scholar 

  • Garofano-Gomez V, Martinez-Capel F, Bertoldi W, Gurnell A, Estornell J, Segura-Beltran F (2013) Six decades of changes in the riparian corridor of a Mediterranean river: a synthetic analysis based on historical data sources. Ecohydrology 6(4):536–553. doi:10.1002/eco.1330

    Article  Google Scholar 

  • Gasparri NI, Grau HR (2009) Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972-2007). For Ecol Manag 258(6):913–921. doi:10.1016/j.foreco.2009.02.024

    Article  Google Scholar 

  • Gharehaghaji M, Shabani AA, Feghhi J, Danehkar A, Kaboli M, Ashrafi S (2012) Effects of landscape context on bird species abundance of tree fall gaps in a temperate deciduous forest of Northern Iran. For Ecol Manag 267:182–189. doi:10.1016/j.foreco.2011.12.001

    Article  Google Scholar 

  • Gillespie TW, Walter H (2001) Distribution of bird species richness at a regional scale in tropical dry forest of Central America. J Biogeogr 28(5):651–662

    Article  Google Scholar 

  • Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Prog Phys Geogr 32(2):203–221. doi:10.1177/0309133308093606

    Article  Google Scholar 

  • Granell C, Havlik D, Schade S, Sabeur Z, Delaney C, Pielorz J, Uslander T, Mazzetti P, Schleidt K, Kobernus M, Havlik F, Bodsberg NR, Berre A, Mon JL (2016) Future Internet technologies for environmental applications. Environ Model Softw 78:1–15. doi:10.1016/j.envsoft.2015.12.015

    Article  Google Scholar 

  • Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101(4):310–320. doi:10.1016/j.landurbplan.2011.02.036

    Article  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1(2):143–156. doi:10.1007/s100219900011

    Article  Google Scholar 

  • Gustafson EJ, Crow TR (1996) Simulating the effects of alternative forest management strategies on landscape structure. J Environ Manag 46(1):77–94. doi:10.1006/jema.1996.0008

    Article  Google Scholar 

  • Gustafson EJ, Sturtevant BR (2013) Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16(1):60–74. doi:10.1007/s10021-012-9596-1

    Article  Google Scholar 

  • Hagen-Zanker A (2016) A computational framework for generalized moving windows and its application to landscape pattern analysis. Int J Appl Earth Obs 44:205–216. doi:10.1016/j.jag.2015.09.010

    Article  Google Scholar 

  • Haque U, Huda M, Hossain A, Ahmed SM, Moniruzzaman M, Haque R (2009) Spatial malaria epidemiology in Bangladeshi highlands. Malar J 8:185. doi:10.1186/1475-2875-8-185

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardt E, dos Santos RF, de Pablo CL, de Agar PM, Pereira-Silva EFL (2013) Utility of landscape mosaics and boundaries in forest conservation decision making in the Atlantic Forest of Brazil. Landsc Ecol 28(3):385–399. doi:10.1007/s10980-013-9845-5

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782. doi:10.1111/j.1523-1739.2005.00045.x

    Article  Google Scholar 

  • Hayes JJ, Robeson SM (2011) Relationships between fire severity and post-fire landscape pattern following a large mixed-severity fire in the Valle Vidal, New Mexico, USA. For Ecol Manag 261(8):1392–1400. doi:10.1016/j.foreco.2011.01.023

    Article  Google Scholar 

  • Hoechstetter S, Walz U, Dang LH, Thinh NX (2008) Effects of topography and surface roughness in analyses of landscape structure—a proposal to modify the existing set of landscape metrics. Landsc Online 3:1–14

    Google Scholar 

  • Holland GJ, Bennett AF (2009) Differing responses to landscape change: implications for small mammal assemblages in forest fragments. Biodivers Conserv 18(11):2997–3016. doi:10.1007/s10531-009-9621-7

    Article  Google Scholar 

  • Hou W, Walz U (2013) Enhanced analysis of landscape structure: inclusion of transition zones and small-scale landscape elements. Ecol Indic 31:15–24. doi:10.1016/j.ecolind.2012.11.014

    Article  Google Scholar 

  • Jackson VL, Laack LL, Zimmerman EG (2005) Landscape metrics associated with habitat use by ocelots in south Texas. J Wildl Manag 69(2):733–738

    Article  Google Scholar 

  • Jenness J (2005) Topographic position index (tip_jen.avx) extension for ArcView 3.x., Jenness Enterprises. http://www.jennessent.com/arview/tpi.htm

  • Jomaa I, Auda Y, Hamze M, Abi saleh B, Safi S (2009) Analysis of eastern mediterranean oak forests over the period 1965–2003 using landscape indices on a patch basis. Landsc Res 34(1):105–124. doi:10.1080/01426390802591569

    Article  Google Scholar 

  • Jung M (2012) LecoS-A QGIS plugin to conduct landscape ecology statistics, http://plugins.qgis.org/plugins/LecoS

  • Kelly M, Tuxen KA, Stralberg D (2011) Mapping changes to vegetation pattern in a restoring wetland: finding pattern metrics that are consistent across spatial scale and time. Ecol Indic 11(2):263–273. doi:10.1016/j.ecolind.2010.05.003

    Article  Google Scholar 

  • Kintz DB, Young KR, Crews-Meyer KA (2006) Implications of land use/land cover change in the buffer zone of a National Park in the Tropical Andes. Environ Manag 38(2):238–252. doi:10.1007/s00267-005-0147-9

    Article  Google Scholar 

  • Kirk DA, Welsh DA, Baker JA, Thompson ID, Csizy M (2012) Avian assemblages differ between old-growth and mature white pine forests of Ontario, Canada: a role for supercanopy trees? Avian Conserv Ecol 7(1):4. doi:10.5751/Ace-00503-070104

    Google Scholar 

  • Klug H, Kmoch A (2015) Operationalizing environmental indicators for real time multi-purpose decision making and action support. Ecol Model 295:66–74

    Article  Google Scholar 

  • Kouba Y, Alados CL (2012) Spatio-temporal dynamics of Quercus faginea forests in the Spanish Central Pre-Pyrenees. Eur J For Res 131(2):369–379. doi:10.1007/s10342-011-0509-1

    Article  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theor Methods 26(6):1481–1496. doi:10.1080/03610929708831995

    Article  Google Scholar 

  • Kupfer JA (2012) Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr 36(3):400–420. doi:10.1177/0309133312439594

    Article  Google Scholar 

  • Lafortezza R, Corry RC, Sanesi G, Brown RD (2005) Quantitative approaches to landscape spatial planning: clues from landscape ecology. Sust Developm Plan 84:239–250

    Google Scholar 

  • Lang S, Tiede D (2003) vLATE Extension für ArcGIS—vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse. Presented at German ESRI Anwenderkonferenz, Innsbruck. https://sites.google.com/site/largvlate/gis-tools/v-late

  • Langford WT, Gergel SE, Dietterich TG, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9(3):474–488. doi:10.1007/s10021-005-0119-1

    Article  Google Scholar 

  • Larsson TB (2001) Biodiversity evaluation tools for European forests. Eur For Inst Proc 38:75–81

    Google Scholar 

  • Laurent E (2006) Methods for generating patch and landscape metrics. Paper presented at the Conservation Design Workshop, St. Louis, MO, April 11, 2006

    Google Scholar 

  • Lausch A, Herzog F (2002) Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecol Indic 2(1–2):3–15

    Article  Google Scholar 

  • Lechner AM, Langford WT, Bekessy SA, Jones SD (2012) Are landscape ecologists addressing uncertainty in their remote sensing data? Landsc Ecol 27(9):1249–1261. doi:10.1007/s10980-012-9791-7

    Article  Google Scholar 

  • Lechner AM, Reinke KJ, Wang Y, Bastin L (2013) Interactions between landcover pattern and geospatial processing methods: effects on landscape metrics and classification accuracy. Ecol Complex 15:71–82. doi:10.1016/j.ecocom.2013.03.003

    Article  Google Scholar 

  • Leitao AB, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc Urban Plan 59(2):65–93

    Article  Google Scholar 

  • Lethbridge MR, Westphal MI, Possingham HP, Harper ML, Souter NJ, Anderson N (2010) Optimal restoration of altered habitats. Environ Model Softw 25(6):737–746. doi:10.1016/j.envsoft.2009.11.013

    Article  Google Scholar 

  • Li HB, Wu JG (2004) Use and misuse of landscape indices. Landsc Ecol 19(4):389–399

    Article  Google Scholar 

  • Li HB, Gartner DI, Mou P, Trettin CC (2000) A landscape model (LEEMATH) to evaluate effects of management impacts on timber and wildlife habitat. Comput Electron Agric 27(1–3):263–292. doi:10.1016/S0168-1699(00)00088-0

    Article  Google Scholar 

  • Li MS, Mao LJ, Zhou CG, Vogelmann JE, Zhu ZL (2010) Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2. J Environ Manag 91(12):2572–2580. doi:10.1016/j.jenvman.2010.07.010

    Article  Google Scholar 

  • Li X, Lin JY, Chen YM, Liu XP, Ai B (2013) Calibrating cellular automata based on landscape metrics by using genetic algorithms. Int J Geogr Inf Sci 27(3):594–613. doi:10.1080/13658816.2012.698391

    Article  Google Scholar 

  • Li A, Dragicevicb S, Castroc FA, Sesterd M, Wintere S, Coltekinf A, Pettitg C, Jiangh B, Haworthi J, Steinj A, Chengi T (2016) Geospatial big data handling theory and methods: a review and research challenges. ISPRS J Photogramm Remote Sens 115:119–133

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870. doi:10.1080/01431160600746456

    Article  Google Scholar 

  • Macdonald DW, Rushton S (2003) Modelling space use and dispersal of mammals in real landscapes: a tool for conservation. J Biogeogr 30(4):607–620

    Article  Google Scholar 

  • MacLean MG, Congalton RG (2013) PolyFrag: a vector-based program for computing landscape metrics. GISci Remot Sens 50(6):591–603. doi:10.1080/15481603.2013.856537

    Google Scholar 

  • Maier JAK, Hoef JMV, McGuire AD, Bowyer RT, Saperstein L, Maier HA (2005) Distribution and density of moose in relation to landscape characteristics: effects of scale. Can J For Res 35(9):2233–2243. doi:10.1139/X05-123

    Article  Google Scholar 

  • Majasalmi T, Rautiainen M (2016) The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study. Remot Sens Lett 7(5):427–436. doi:10.1080/2150704X.2016.1149251

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freeman, New York

    Google Scholar 

  • Marceau DJ, Howarth PJ, Gratton DJ (1994) Remote-sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem. Remote Sens Environ 49(2):93–104. doi:10.1016/0034-4257(94)90046-9

    Article  Google Scholar 

  • Martinez S, Ramil P, Chuvieco E (2010) Monitoring loss of biodiversity in cultural landscapes. New methodology based on satellite data. Landsc Urban Plan 94(2):127–140. doi:10.1016/j.landurbplan.2009.08.006

    Article  Google Scholar 

  • Masse A, Cote SD (2012) Linking habitat heterogeneity to space use by large herbivores at multiple scales: from habitat mosaics to forest canopy openings. For Ecol Manag 285:67–76. doi:10.1016/j.foreco.2012.07.039

    Article  Google Scholar 

  • McAlpine CA, Eyre TJ (2002) Testing landscape metrics as indicators of habitat loss and fragmentation in continuous eucalypt forests (Queensland, Australia). Landsc Ecol 17(8):711–728

    Article  Google Scholar 

  • McConnell WJ, Sweeney SP, Mulley B (2004) Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agric Ecosyst Environ 101(2–3):171–184. doi:10.1016/j.agee.2003.09.012

    Article  Google Scholar 

  • McGarigal K, Tagil S, Cushman SA (2009) Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landsc Ecol 24(3):433–450. doi:10.1007/s10980-009-9327-y

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) “FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps.” Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Miyamoto A, Sano M (2008) The influence of forest management on landscape structure in the cool-temperate forest region of central Japan. Landsc Urban Plan 86(3–4):248–256. doi:10.1016/j.landurbplan.2008.03.002

    Article  Google Scholar 

  • Mladenoff DJ, Host GE, Boeder J, Crow TR (1996) LANDIS: a spatial model of forest landscape disturbance, succession, and management. In: Goodchild MF, Steyaert LT, Parks BO et al (eds) GIS and environmental modeling: progress and research issues. Wiley, New York, pp 175–180

    Google Scholar 

  • Mokhtari Z, Sofyanian A, Kajeddin SJ, Ziaee H (2014) Gradient analysis of urban landscape pattern (Case Study: Isfahan, Iran). J Biodivers Environm Sci 4(6):322–333

    Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Petersen GA (1993) Terrain attributes: estimation methods and scale effects. In: Jakeman AJBM, McAleer M (eds) Modeling change in environmental systems. Wiley, London, pp 189–214

    Google Scholar 

  • Mueller T, Lenz J, Caprano T, Fiedler W, Bohning-Gaese K (2014) Large frugivorous birds facilitate functional connectivity of fragmented landscapes. J Appl Ecol 51(3):684–692. doi:10.1111/1365-2664.12247

    Article  Google Scholar 

  • Naish S, Hu W, Mengersen K, Tong S (2011) Spatial and temporal clusters of Barmah Forest virus disease in Queensland, Australia. Tropical Med Int Health 16(7):884–893. doi:10.1111/j.1365-3156.2011.02775.x

    Article  CAS  Google Scholar 

  • Narusk K (2014) Sensitivity of landscape pattern metrics to processing methods of satellite images (Maastikumustri indikaatorite tundlikkus satelliidipiltide rasterandmestiku töötlustehnikate suhtes). University of Tartu, Tartu

    Google Scholar 

  • Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanpää T, Holopainen M (2015) Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens 7(11):15467–15493

    Article  Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc Ecol 19(4):435–455

    Article  Google Scholar 

  • Nittel S (2009) A survey of geosensor networks: advances in dynamic environmental monitoring. Sensors 9(7):5664–5678

    Article  PubMed  PubMed Central  Google Scholar 

  • Openshaw S, Taylor PJ (1981) The modifiable areal unit problem. In: Wrigley N, Bennett RJ (eds) Quantitative geography: a british view. Routledge and Kegan, London, pp 60–70

    Google Scholar 

  • Palmer JF (2004) Using spatial metrics to predict scenic perception in a changing landscape: Dennis, Massachusetts. Landsc Urban Plan 69(2–3):201–218. doi:10.1016/j.landurbplan.2003.08.010

    Article  Google Scholar 

  • Peng J, Wang Y, Ye M, Wu J, Zhang Y (2007) Effects of land-use categorization on landscape metrics: a case study in urban landscape of Shenzhen, China. Int J Remote Sens 28(21):4877–4895. doi:10.1080/01431160601075590

    Article  Google Scholar 

  • Piwowar JM (1987) Conversion between vector and raster format data for geographic information systems applications. Waterloo, ON, Canada

    Google Scholar 

  • Plante M, Lowell K, Potvin F, Boots B, Fortin MJ (2004) Studying deer habitat on Anticosti Island, Quebec: relating animal occurrences and forest map information. Ecol Model 174(4):387–399. doi:10.1016/j.ecolmodel.2003.09.035

    Article  Google Scholar 

  • Plexida SG, Sfougaris AI, Ispikoudis IP, Papanastasis VP (2014) Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes. Int J Appl Earth Obs 26:26–35. doi:10.1016/j.jag.2013.05.001

    Article  Google Scholar 

  • Quine CP, Watts K (2009) Successful de-fragmentation of woodland by planting in an agricultural landscape? An assessment based on landscape indicators. J Environ Manag 90(1):251–259. doi:10.1016/j.jenvman.2007.09.002

    Article  CAS  Google Scholar 

  • Ramezani H, Holm S, Allard A, Stahl G (2010) Monitoring landscape metrics by point sampling: accuracy in estimating Shannon’s diversity and edge density. Environ Monit Assess 164(1–4):403–421. doi:10.1007/s10661-009-0902-0

    Article  CAS  PubMed  Google Scholar 

  • Rego F, Godinho-Ferreira P, Uva JS, Cunha J (2004) Combination of structural and compositional factors for describing forest types using NFI data, vol 51. Monitoring and Indicators for Forest Biodiversity in Europe—From Ideas to Operationality. EFI Proceedings

    Google Scholar 

  • Remmel TK, Csillag F (2003) When are two landscape pattern indices significantly different? J Geogr Syst 5:331–351

    Article  Google Scholar 

  • Remmel TK, Fortin MJ (2013) Categorical, class-focused map patterns: characterization and comparison. Landsc Ecol 28(8):1587–1599. doi:10.1007/s10980-013-9905-x

    Article  Google Scholar 

  • Reunanen P, Fall A, Nikula A (2010) Biodiversity and ecological forest-cover domains in boreal landscapes. Biodivers Conserv 19(3):665–678. doi:10.1007/s10531-009-9726-z

    Article  Google Scholar 

  • Richardson JJ, Moskal LM (2011) Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sens Environ 115(10):2640–2651. doi:10.1016/j.rse.2011.05.020

    Article  Google Scholar 

  • Riitters KH, Oneill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jones KB, Jackson BL (1995) A factor-analysis of landscape pattern and structure metrics. Landsc Ecol 10(1):23–39

    Article  Google Scholar 

  • Rikimaru A, Miyatake S, Dugan P (1999) Sky is the limit for forest management tool. ITTO Trop For Update 9(3):6–9

    Google Scholar 

  • Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Int J Therm Sci 5(1–4):23–27

    Google Scholar 

  • Robertson C, Nelson TA, Boots B, Wulder MA (2007) STAMP: spatial-temporal analysis of moving polygons. J Geogr Syst 9(3):207–227. doi:10.1007/s10109-007-0044-2

    Article  Google Scholar 

  • Sano M, Miyamoto A, Furuya N, Kogi K (2009) Using landscape metrics and topographic analysis to examine forest management in a mixed forest, Hokkaido, Japan: guidelines for management interventions and evaluation of cover changes. For Ecol Manag 257(4):1208–1218. doi:10.1016/j.foreco.2008.10.005

    Article  Google Scholar 

  • Saura S, Martinez-Millan J (2001) Sensitivity of landscape pattern metrics to map spatial extent. Photogramm Eng Remote Sens 67(9):1027–1036

    Google Scholar 

  • Saura S, Torne J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24(1):135–139. doi:10.1016/j.envsoft.2008.05.005

    Article  Google Scholar 

  • Saveraid EH, Debinski DM, Kindscher K, Jakubauskas ME (2001) A comparison of satellite data and landscape variables in predicting bird species occurrences in the Greater Yellowstone Ecosystem, USA. Landsc Ecol 16(1):71–83

    Article  Google Scholar 

  • Schetter TA, Walters TL, Root KV (2013) A multi-scale spatial analysis of native and exotic plant species richness within a mixed-disturbance oak Savanna landscape. Environ Manag 52(3):581–594. doi:10.1007/s00267-013-0120-y

    Article  Google Scholar 

  • Schindler S, Poirazidis K, Wrbka T (2008) Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol Indic 8(5):502–514. doi:10.1016/j.ecolind.2007.06.001

    Article  Google Scholar 

  • Schindler S, von Wehrden H, Poirazidis K, Wrbka T, Kati V (2013) Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol Indic 31:41–48. doi:10.1016/j.ecolind.2012.04.012

    Article  Google Scholar 

  • Shao GF, Wu WC (2004) The effects of classification accuracy on landscape indices. Remot Sens Gis Accur Assessm:209–220

    Google Scholar 

  • Shao GF, Wu JG (2008) On the accuracy of landscape pattern analysis using remote sensing data. Landsc Ecol 23(5):505–511. doi:10.1007/s10980-008-9215-x

    Article  Google Scholar 

  • Sieving KE, Willson MF, DeSanto TL (1996) Habitat barriers to movement of understory birds in fragmented south-temperate rainforest. Auk 113(4):944–949

    Article  Google Scholar 

  • Simova P, Gdulova K (2012) Landscape indices behavior: a review of scale effects. Appl Geogr 34:385–394. doi:10.1016/j.apgeog.2012.01.003

    Article  Google Scholar 

  • Sitzia T, Semenzato P, Trentanovi G (2010) Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. For Ecol Manag 259(8):1354–1362. doi:10.1016/j.foreco.2010.01.048

    Article  Google Scholar 

  • Skole D, Tucker C (1993) Tropical Deforestation and Habitat Fragmentation in the Amazon—Satellite Data from 1978 to 1988 (Vol 260, Pg 1909, 1993). Science 261(5125):1104–1104

    Google Scholar 

  • Soares BS, Cerqueira GC, Pennachin CL (2002) DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154(3):217–235. doi:10.1016/S0304-3800(02)00059-5

    Article  Google Scholar 

  • Soares B, Silvestrini R, Nepstad D, Brando P, Rodrigues H, Alencar A, Coe M, Locks C, Lima L, Hissa L, Stickler C (2012) Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landsc Ecol 27(4):585–598. doi:10.1007/s10980-012-9723-6

    Article  Google Scholar 

  • Solberg S, Brunner A, Hanssen KH, Lange H, Naesset E, Rautiainen M, Stenberg P (2009) Mapping LAI in a Norway spruce forest using airborne laser scanning. Remote Sens Environ 113(11):2317–2327. doi:10.1016/j.rse.2009.06.010

    Article  Google Scholar 

  • Southworth J, Nagendra H, Carlson LA, Tucker C (2004) Assessing the impact of Celaque National Park on forest fragmentation in western Honduras. Appl Geogr 24(4):303–322. doi:10.1016/j.apgeog.2004.07.003

    Article  Google Scholar 

  • Soverel NO, Coops NC, White JC, Wulder MA (2010) Characterizing the forest fragmentation of Canada’s national parks. Environ Monit Assess 164(1–4):481–499. doi:10.1007/s10661-009-0908-7

    Article  CAS  PubMed  Google Scholar 

  • Spearman L (2003) The challenges of defining patches & patch dynamics in insect conservation biology, 2015. http://crssa.rutgers.edu/courses/lse/Web_Patch/final/Lauren/spearman_insectpatch_v2.html

  • Staus NL, Strittholt JR, DellaSala DA, Robinson R (2002) Rate and pattern of forest disturbance in the Klamath-Siskiyou ecoregion, USA between 1972 and 1992. Landsc Ecol 17(5):455–470. doi:10.1023/A:1021274701133

    Article  Google Scholar 

  • Steiniger S, Hay GJ (2009) Free and open source geographic information tools for landscape ecology. Ecol Inform 4(4):183–195. doi:10.1016/j.ecoinf.2009.07.004

    Article  Google Scholar 

  • Thompson RG, Warkentin IG, Flemming SP (2008) Response to logging by a limited but variable nest predator guild in the boreal forest. Can J For Res 38(7):1974–1982. doi:10.1139/X08-049

    Article  Google Scholar 

  • Tittler R, Messier C, Fall A (2012) Concentrating anthropogenic disturbance to balance ecological and economic values: applications to forest management. Ecol Appl 22(4):1268–1277

    Article  PubMed  Google Scholar 

  • Trainor AM, Walters JR, Urban DL, Moody A (2013) Evaluating the effectiveness of a Safe Harbor Program for connecting wildlife populations. Anim Conserv 16(6):610–620. doi:10.1111/acv.12035

    Article  Google Scholar 

  • Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123(4):507–519. doi:10.1016/j.biocon.2005.01.001

    Article  Google Scholar 

  • Uuemaa E, Roosaare J, Mander U (2005) Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol Indic 5(4):350–369. doi:10.1016/j.ecolind.2005.03.009

    Article  Google Scholar 

  • Uuemaa E, Mander U, Marja R (2013) Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecol Indic 28:100–106. doi:10.1016/j.ecolind.2012.07.018

    Article  Google Scholar 

  • VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C (2011) SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. 1.1-5. http://cran.r-project.org/

  • Vivoni ER, Teles V, Ivanov VY, Bras RL, Entekhabi D (2005) Embedding landscape processes into triangulated terrain models. Int J Geogr Inf Sci 19(4):429–457. doi:10.1080/13658810512331325111

    Article  Google Scholar 

  • Vogt P, Riitters KH, Iwanowski M, Estreguil C, Kozak J, Soille P (2007) Mapping landscape corridors. Ecol Indic 7(2):481–488. doi:10.1016/j.ecolind.2006.11.001

    Article  Google Scholar 

  • Wade TG, Wickham JD, Nash MS, Neale AC, Riitters KH, Jones KB (2003) A comparison of vector and raster GIS methods for calculating landscape metrics used in environmental assessments. Photogramm Eng Remote Sens 69(12):1399–1405

    Article  Google Scholar 

  • Wang XL, Cumming SG (2011) Measuring landscape configuration with normalized metrics. Landsc Ecol 26(5):723–736. doi:10.1007/s10980-011-9601-7

    Article  Google Scholar 

  • Wang WJ, He HS, Fraser JS, Thompson FR, Shifley SR, Spetich MA (2014) LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales. Ecography 37(3):225–229. doi:10.1111/j.1600-0587.2013.00495.x

    Article  Google Scholar 

  • Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C, Lourival R, Kircher L, Possingham HP (2009) Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24(12):1513–1521. doi:10.1016/j.envsoft.2009.06.005

    Article  Google Scholar 

  • Westphal MI, Field SA, Possingham HP (2007) Optimizing landscape configuration: a case study of woodland birds in the Mount Lofty Ranges, South Australia. Landsc Urban Plan 81(1–2):56–66. doi:10.1016/j.landurbplan.2006.10.015

    Article  Google Scholar 

  • Wu JG (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landsc Ecol 19(2):125–138

    Article  Google Scholar 

  • Wu JG, Shen WJ, Sun WZ, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17(8):761–782

    Article  Google Scholar 

  • Wulder MA, White JC, Cranny M, Hall RJ, Luther JE, Beaudoin A, Goodenough DG, Dechka JA (2008) Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Can J Remote Sens 34(6):549–562

    Article  Google Scholar 

  • Yu DY, Shi PJ, Han GY, Zhu WQ, SQ D, Xun B (2011) Forest ecosystem restoration due to a national conservation plan in China. Ecol Eng 37(9):1387–1397. doi:10.1016/j.ecoleng.2011.03.011

    Article  Google Scholar 

  • Zapponi L, Del Bianco M, Luiselli L, Catorci A, Bologna MA (2013) Assessing environmental requirements effects on forest fragmentation sensitivity in two arboreal rodents. Mamm Biol 78(3):157–163. doi:10.1016/j.mambio.2012.08.005

    Article  Google Scholar 

  • Zaragozi B, Belda A, Linares J, Martinez-Perez JE, Navarro JT, Esparza J (2012) A free and open source programming library for landscape metrics calculations. Environ Model Softw 31:131–140. doi:10.1016/j.envsoft.2011.10.009

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grant no. IUT2-16 of the Ministry of Education and Science of Estonia and by the Marie Skłodowska-Curie Actions individual fellowships offered by the Horizon 2020 Programme under REA grant agreement number 660391. We also thank the reviewers and language editor for constructive and helpful comments and suggestions that helped to significantly improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Uuemaa .

Editor information

Editors and Affiliations

Appendix: Technical Terms

Appendix: Technical Terms

Categorical maps —Maps that define each unit of a landscape in terms of a descriptive category (e.g., forest vs. grassland) rather than quantitatively.

Central point method —A method used to convert vector data to raster data by assigning a value to a cell in a grid based on the value for the polygon that overlaps the center of the cell. See also majority rule method.

Fractal dimension —A ratio that provides a statistical index of the degree of complexity of a pattern by examining how the level of detail in a pattern changes in response to changes in the scale at which it is measured.

Free open-source software (FOSS) —Software whose source code is made available to anyone under a license in which the copyright holder provides the rights to study, change, and distribute the software to anyone and for any purpose.

Geographical information system (GIS) —A system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data.

Graph theory —A mathematical description of the properties of graphs and, thus, of the pairwise relationships between variables or objects.

Image rectification—A transformation process used to project an image from a sensor’s coordinate system into a geographical coordinate system.

Landscape metrics—Algorithms that quantify specific spatial characteristics of patches, classes of patches, or entire landscape mosaics.

Leaf area index —A dimensionless quantity that characterizes plant canopies by dividing the total one-sided area of leaf tissue by the ground surface area covered by the canopy that contains those leaves.

LiDAR (light detection and ranging )A remote sensing method that uses pulsed laser light to measure the distance between the sensor and a surface.

Majority rule method—A method used to convert vector data to raster data by using the feature that accounts for the largest area within a cell of a grid to define the attribute value assigned to the cell. See also central point method.

Map algebra—A set of primitive operations in a geographic information system (GIS) that allow two or more raster layers (“maps”) of similar dimensions to produce a new raster layer (map) using algebraic operations such as addition or subtraction.

Marxan algorithm —An algorithm used in conservation planning that aims to minimize the sum of the site-specific costs and connectivity costs for selected planning units, subject to the constraint that the conservation features in a reserve system must achieve predetermined targets.

Minimum mapping unit (MMU) —The size of the smallest feature that can be delineated within the boundaries of a map.

Modifiable areal unit problem—A challenge that occurs during the spatial analysis of aggregated data, in which the results differ when the same analysis is applied to the same data under different aggregation schemes.

Neutral landscape models —The minimum set of rules required to generate a pattern in the absence of a particular process; neutral models provide a means of testing the effect of the measured process on the patterns that are actually observed.

Open data—Data that can be freely used, reused, and redistributed by anyone, without restrictions from copyright, patents, or other mechanisms of control.

Red-edge chlorophyll index —A method used to estimate canopy chlorophyll and nitrogen contents based on remote sensing data.

SAR (synthetic aperture radar )—A form of radar that can be used to create images of objects, such as landscapes; the images can be two- or three-dimensional representations of the object.

Landscape metric scalograms—The response curves of landscape metrics to changing grain size that allow the detection of the most representative scales.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Uuemaa, E., Oja, T. (2017). Mapping the Abstractions of Forest Landscape Patterns. In: Remmel, T., Perera, A. (eds) Mapping Forest Landscape Patterns. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7331-6_6

Download citation

Publish with us

Policies and ethics