Skip to main content

Regression Tree Modeling of Spatial Pattern and Process Interactions

  • Chapter
  • First Online:
Mapping Forest Landscape Patterns

Abstract

In forestry, many fundamental spatial processes cannot be measured directly and data on spatial patterns are used as a surrogate for studying processes. To characterize the outcomes of a dynamic process in terms of a spatial pattern, we often consider the probability of certain outcomes over a large area rather than on the scale of the particular process. In this chapter we demonstrate data mining approaches that leverage the growing availability of forestry-related spatial data sets for understanding spatial processes. We present classification and regression trees (CART) and associated methods, including boosted regression trees (BRT) and random forests (RT). We demonstrate how data mining or machine learning approaches are useful for relating spatial patterns and processes. Methods are applied to a wildfire data and covariate data are used to contextualize the quantified patterns. Results indicate that fire patterns are mostly related to processes influenced by people. Given the growing number of multi-temporal and large area datasets on forests and ecology machine learning and data mining approaches should be leveraged to quantify dynamic space-time relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amman G (1977) Role of the mountain pine beetle in lodgepole pine ecosystems: impact on succession. In: Mattson WJ (ed) The role of arthropods in forest ecosystems. New York, Springer-Verlag, pp 3–18

    Chapter  Google Scholar 

  • Anderson NM, Germain H, Bevilacqua E (2011) Geographic information system-based spatial analysis of sawmill wood procurement. J For 109:34–42

    Google Scholar 

  • Aukema BH, Carroll AL, Zhu J, Raffa KF, Sickley TA, Taylor SW (2006) Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29:427–441

    Article  Google Scholar 

  • Axelson JN, Alfaro RI, Hawkes BC (2010) Changes in stand structure in uneven-aged lodgepole pine stands impacted by mountain pine beetle epidemics and fires in central British Columbia. For Chron 86:87–99

    Article  Google Scholar 

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis, vol 413. Longman Scientific & Technical, Essex

    Google Scholar 

  • Berk RA (2008) Statistical learning from a regression perspective, vol 14. Springer, New York

    Google Scholar 

  • Bessie A, Johnson E (1995) The relative importance of fuels and weather on fire behaviour in subalpine forests. Ecology 76:747–762

    Article  Google Scholar 

  • Bigler C, Kulawkowski D, Veblen TT (2005) Multiple disturbance interactions and drought influence fire severity in rocky mountain subalpine forests. Ecology 86:3018–3029

    Article  Google Scholar 

  • Bone C, Wulder MA, White J, Robertson C, Nelson TA (2013) A GIS-based risk rating of forest insect outbreaks using aerial overview surveys and the local Moran's I statistic. Appl Geogr 40:161–170

    Article  Google Scholar 

  • Bourbonnais ML, Nelson TA, Cattet MRL, Darimont CT, Stenhouse GB (2013b) Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada. PLoS One 8(12):e83768. doi:10.1371/journal.pone.0083768

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourbonnais ML, Nelson TA, Wulder MA (2013a) Geographic analysis of the impacts of mountain pine beetle infestation on forest fire ignition. Can Geogr/Le Géographe Canadien 58(2):188–202. doi:10.1111/j.1541-0064.2013.12057.x

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. Retrieved from http://www.springerlink.com/index/U0P06167N6173512.pdf

    Article  Google Scholar 

  • Breiman L, Friedman J, Olsen R, Stone C (1984) Classification and regression trees. Chapman and Hall/CRC, Boca Raton, p 368

    Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28(4):281–298

    Article  Google Scholar 

  • Canadian Forest Service (2010) National Fire Database – agency fire data. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre (Edmonton, AB). http://cwfis.cfs.nrcan.gc.ca/ha/nfdb. Accessed 28 Apr 2014

  • Chuvieco E, Salas J (1996) Mapping the spatial distribution of forest fire danger using GIS. Int J Geogr Inf Syst 10:333–345. doi:10.1080/02693799608902082

    Article  Google Scholar 

  • Coops NC, Gillanders SN, Wulder MA, Gergel SE, Nelson T, Goodwin NR (2010) Assessing changes in forest fragmentation following infestation using time series Landsat imagery. For Ecol Manag 259:2355–2365

    Article  Google Scholar 

  • Cressie NA, Chan NH (1989) Spatial modeling of regional variables. J Am Stat Assoc 84:393–401. doi:10.2307/2289922

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    Article  PubMed  Google Scholar 

  • Dark SJ, Bram D (2007) The modifiable areal unit problem (MAUP) in physical geography. Prog Phys Geogr 31:471–479. doi:10.1177/0309133307083294

    Article  Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88(1):243–251. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17489472

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius K (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192. Retrieved from http://www.esajournals.org/doi/pdf/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

    Article  Google Scholar 

  • Demarchi, D. A. (2011) The British Columbia Ecoregion classification, third edition. Ecosystem information section, Ministry of Environment. (Victoria, BC)

    Google Scholar 

  • Díaz-Avalos C, Peterson DL, Alvarado E, Ferguson SA, Besag JE (2001) Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Can J For Res 31:1579–1593

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudık M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species ’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Leathwick J, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  CAS  PubMed  Google Scholar 

  • Flannigan MD, Harrington JB (1989) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). J Appl Meteorol 27:441–452

    Article  Google Scholar 

  • Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Chang 72:1–16

    Article  CAS  Google Scholar 

  • Fortin M-J, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Fortin MJ, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos 102(1):203–212

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Article  Google Scholar 

  • Friedman J (2001) Greedy function approximation: a gradient boosting machine, 1999. Ann Statist 29(5):1189–1232. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Greedy+Function+Approximation:+A+Gradient+Boosting+Machine#3

    Article  Google Scholar 

  • Friedman JH, Meulman JJ (2003) Multiple additive regression trees with application in epidemiology. Stat Med 22(9):1365–1381. doi:10.1002/sim.1501

    Article  PubMed  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2009) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Getis A, Boots BN (1978) Models of spatial processes: an approach to the study of point, line, and area patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Ghazoul J, McAllister M (2003) Communicating complexity and uncertainty in decision making contexts: Bayesian approaches to forest research. Int For Rev 5(1):9–19

    Google Scholar 

  • Gómez C, White JC, Wulder MA (2011) Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens Environ 115(7):1665–1679

    Article  Google Scholar 

  • Gralewicz NJ, Nelson TA, Wulder MA (2011) Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. Int J Wildland Fire 21:230–242

    Article  Google Scholar 

  • Gralewicz NJ, Nelson TA, Wulder MA (2012) Factors influencing national scale wildfire susceptibility in Canada. For Ecol Manag 265:20–29

    Article  Google Scholar 

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34(1):9–17

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Haining R (1990) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hall JP, Moody B (1994) Forest depletions caused by insects and diseases in Canada 1982–1987. Natural Resources Canada, Canadian Forest Service, Ottawa, ON

    Google Scholar 

  • Hamann A, Wang TL (2005) Models of climatic normals for genecology and climate change studies in British Columbia. Agric For Meteorol 128:211–221

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, p 745

    Google Scholar 

  • Hawkes B, Taylor SW, Stockdale C, Shore TL, Alfaro RI, Campbell R, Vera P (2004) Impact of mountain pine beetle on stand dynamics in BC. In: Shore TL, Brooks JE, Stone JE (eds) Mountain pine beetle symposium: challenges and solutions. October 30–31, Kelowna, British Columbia. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Information Report BC-X-399, Victoria, BC

    Google Scholar 

  • Hawkins BA (2012) Eight (and a half) deadly sins of spatial analysis. J Biogeogr 39(1):1–9. doi:10.1111/j.1365-2699.2011.02637.x

    Article  Google Scholar 

  • Hayes GL (1942) Differences in fire danger with altitude, aspect, and time of day. J For 40:318–323

    Google Scholar 

  • Hély C, Flannigan M, Bergeron Y, McRae D (2000) Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can J For Res 31:430–441

    Article  Google Scholar 

  • Holmes K, Nelson T, Coops N, Wulder M (2013) Biodiversity indicators show climate change will alter vegetation in parks and protected areas. Diversity 5(2):352–373. doi:10.3390/d5020352

    Article  Google Scholar 

  • Jacquez GM (2000) Spatial analysis in epidemiology: nascent science or a failure of GIS? J Geogr Syst 2:91–97

    Article  Google Scholar 

  • Jenkins MJ, Hebertson E, Page W, Jorgensen A (2008) Bark beetles, fuels, fires and implications for forest management in the intermountain west. For Ecol Manag 254:16–34

    Article  Google Scholar 

  • Jenkins MJ, Page WG, Hebertson EG, Alexander ME (2012) Fuels and fire behavior dynamics in bark beetle-attacked forests in western North America and implications for fire management. For Ecol Manag 275:23–34

    Article  Google Scholar 

  • Jolly WM, Parsons RA, Hadlow AM, Cohn GM, McAllister SS, Popp JB, Hubbard RM, Negron JF (2012) Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. For Ecol Manag 269:52–59

    Article  Google Scholar 

  • Klutsch JG, Battaglia MA, West DR, Costello SL, Negrón JF (2011) Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado. West J Appl For 26:101–109

    Google Scholar 

  • Kumar L, Skidmore AK, Knowles E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci 11:475–497

    Article  Google Scholar 

  • Langford WT, Gergel SE, Dietterich TG, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9(3):474–488

    Article  Google Scholar 

  • Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Ecol Prog Ser 321:267–281.

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Lynch HJ, Renkin RA, Crabtree RL, Moorcroft PR (2006) The influence of previous mountain pine beetle (Dendroctonus ponderosae) activity on the 1988 Yellowstone fires. Ecosystems 9:1318–1327

    Article  Google Scholar 

  • Masek, J. G., Cohen, W. B., Leckie, D., Wulder, M. A., Vargas, R., de Jong, B., Healy, S., et al. (2011) Recent rates of forest harvest and conversion in North America. J Geophys Res 116, G00K03, doi: 10.1029/2010JG001471

  • Michaud JS, Coops NC, Andrew ME, Wulder MA, Brown GS, Rickbeil GJM (2014) Estimating moose (Alces alces) occurrence and abundance from remotely derived environmental indicators. Remote Sens Environ 152:190–201. doi:10.1016/j.rse.2014.06.005

    Article  Google Scholar 

  • Miller C, Urban DL (2000) Connectivity of forest fuels and surface fire regimes. Landsc Ecol 15:145–154

    Article  Google Scholar 

  • Murthy S (1998) Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min Knowl Disc 2:345–389. Retrieved from http://link.springer.com/article/10.1023/A:1009744630224

    Article  Google Scholar 

  • Nelson TA (2012) Trends in spatial analysis. Prof Geogr 64(1):1–12

    Article  Google Scholar 

  • Nelson TA, Boots B (2008) Detecting spatially explicit hot spots in landscape-scale ecology. Ecography 31(5):556–566

    Article  Google Scholar 

  • Nelson T, Boots B (2005) Identifying insect infestation hot spots: an approach using conditional spatial randomization. J Geogr Syst 7(3–4):291–311

    Article  Google Scholar 

  • Nelson T, Boots B, Wulder MA, Shore T, Safranyik L, Ebata T (2006) Rating the susceptibility of forests to mountain pine beetle infestations: the impact of data. Can J Forest Res 36(11):2815–2825.

    Google Scholar 

  • Negrón JF, Bentz BJ, Fettig CJ, Gillette N, Hansen EM, Hayes JL, Kelsey RG et al (2008) US Forest Service bark beetle research in the western United States: looking toward the future. J For 106:325–331

    Google Scholar 

  • Nijland W, Addink EA, De Jong SM, Van der Meer FD (2009) Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sens Environ 113:771–780. doi:10.1016/j.rse.2008.12.002

    Article  Google Scholar 

  • Nijland W, Nielsen SE, Coops NC, Wulder M a, Stenhouse GB (2014) Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics. J Appl Remote Sens 8:083572. doi:10.1117/1.JRS.8.083572

    Article  Google Scholar 

  • Page W, Jenkins MJ (2007) Predicted fire behaviour in selected mountain pine beetle-infested lodgepole pine. For Sci 53:662–674

    Google Scholar 

  • Parisien M-A, Moritz MA (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr 79:127–154

    Article  Google Scholar 

  • Parisien M-A, Peters VS, Wang Y, Little JM, Bosch EM, Stocks BJ (2006) Spatial patterns of forest fires in Canada, 1980–1999. Int J Wildland Fire 15:361–374

    Article  Google Scholar 

  • Powers JS, Sollins P, Harmon ME, Jones JA (1999) Plant-pest interactions in time and space: Douglas-fir bark beetle outbreak as a case study. Landsc Ecol 14:105–120

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199. doi:10.1007/s10021-005-0054-1

    Article  Google Scholar 

  • Reid RW (1961) Moisture changes in lodgepole pine before and after attack by the mountain pine beetle. For Chron 37:368–375

    Article  Google Scholar 

  • Robertson C, Nelson TA, Boots B (2007) Mountain pine beetle dispersal: the spatial-temporal interactions of infestation. For Sci 53(3):395–405

    Google Scholar 

  • Robertson C, Wulder MA, Nelson TA, White JC (2008) Risk rating for mountain pine beetle infestation of lodgepole pine forests over large areas with ordinal regression modelling. For Ecol Manag 256:900–912

    Article  Google Scholar 

  • Robertson C, Farmer CJQ, Nelson TA, Mackenzie IK, Wulder MA, White JC (2009a) Determination of the compositional change (1999–2006) in the pine forests of British Columbia due to mountain pine beetle infestation. Environ Monit Assess 158:593–608

    Article  PubMed  Google Scholar 

  • Robertson C, Nelson TA, Jelinski DE, Wulder MA, Boots B (2009b) Spatial–temporal analysis of species range expansion: the case of the mountain pine beetle, Dendroctonus ponderosae. J Biogeogr 36:1446–1458

    Article  Google Scholar 

  • Shekhar S, Zhang P, Huang Y, Vatsavai RR (2003) Trends in spatial data mining. In: Kargupta H, Joshi A, Sivakumar K, Yesha Y (eds) Data mining: next generation challenges and future directions. AAAI/MIT Press, Cambridge, MA, pp 357–380

    Google Scholar 

  • Shore TL, Safranyik L, Hawkes BC, Taylor SW (2006) Effects of the mountain pine beetle on lodgepole pine stand structure and dynamics. In: Safranyik L, Wilson B (eds) The Mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine. Natural Resources Canada, Canadian Forest Service, Pacific forestry Centre, Victoria, BC, pp 95–114

    Google Scholar 

  • Simard M, Romme WH, Griffin JM, Turner MG (2011) Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecol Monogr 81:3–24

    Article  Google Scholar 

  • Sokal RR, Oden NL, Thomson BA (1998) Local spatial autocorrelation in biological variables. Biol J Linn Soc 65:41–62

    Article  Google Scholar 

  • Statistics Canada (2008) .Road Network File, Reference Guide 92-500-GWE Ottawa, On. Available at: www.statcan.ca/bsolc/english/bsolc?catno=92-500-x

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2002) Large forest fires in Canada, 1959–1997. J Geophys Res Atmos 108:5.1–5.12

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner MG, Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landsc Ecol 9:59–77

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH (1999) Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. Int J Wildland Fire 9:21–36

    Article  Google Scholar 

  • van Oijen M, Thomson A (2010) Toward Bayesian uncertainty quantification for forestry models used in the United Kingdom greenhouse gas inventory for land use, land use change, and forestry. Clim Chang 103(1-2):55–67

    Article  Google Scholar 

  • van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiol 25(7):915–927

    Article  PubMed  Google Scholar 

  • van Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7:23–33

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106–115

    Article  Google Scholar 

  • Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294

    Article  Google Scholar 

  • Walton, A. (2010). Provincial-level projection of the current mountain pine beetle outbreak: update of the infestation projection based on the 2009 provincial aerial overview of forest health and the BCMPB model (year 7). Research branch, BC Forest Service. (Victoria, BC)

    Google Scholar 

  • Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2011) ClimateWNA – high-resolution spatial climate data for western North America. Am Meteorol Soc 51:16–29. doi:10.1175/JAMC-D-11-043.1

    Google Scholar 

  • Wang Q, Ni J, Tenhunen J (2005) Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Glob Ecol Biogeogr 14(4):379–393

    Article  Google Scholar 

  • Waring RH, Coops NC, Mathys A, Hilker T, Latta G (2014) Process-based modeling to assess the effects of recent climatic variation on site productivity and forest function across western North America. Forests 5:518–534. doi:10.3390/f5030518

    Article  Google Scholar 

  • White JC, Wulder MA (2014) The Landsat observation record of Canada: 1972–2012. Can J Remote Sens 39(06):1–13

    Article  Google Scholar 

  • Wulder MA, Ortlepp SM, White JC, Nelson TA, Coops NC (2010) A provincial and regional assessment of the mountain pine beetle epidemic in British Columbia: 1999–2008. J Environ Inform 15:1–13

    Article  Google Scholar 

  • Wulder MA, White JC, Coops NC (2011) Fragmentation regimes of Canada’s forests. Can Geogr 55:288–230

    Article  Google Scholar 

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trisalyn A. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Nelson, T.A., Nijland, W., Bourbonnais, M.L., Wulder, M.A. (2017). Regression Tree Modeling of Spatial Pattern and Process Interactions. In: Remmel, T., Perera, A. (eds) Mapping Forest Landscape Patterns. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7331-6_5

Download citation

Publish with us

Policies and ethics