Skip to main content

Airborne LiDAR Applications in Forest Landscapes

  • Chapter
  • First Online:
Mapping Forest Landscape Patterns

Abstract

This chapter provides an introduction and overview of using light detection and ranging (LiDAR) in forest applications. The first section explains the principles and basic terminology for LiDAR and introduces the use of LiDAR on three different platforms (spaceborne, airborne, and terrestrial) for forest applications. The second section discusses applications in relation to the primary measurements from a LiDAR point cloud, primarily information derived from distance (from the aircraft to the target). We cover concepts related to different representations of surfaces (e.g., digital surface model, digital terrain model, digital elevation model, and canopy height model). Typically, single trees can be identified from the canopy height model and there are two different ways to assign LiDAR points to individual trees, the surface-based method and the point-based method. The third section discusses forest applications in relation to secondary measurement from a LiDAR point cloud, information derived from point cloud geometry rather than direct distance measurements. This section covers tree genera classification; the use of allometric equations for deriving DBH, biomass, and other forest attributes; and the classification of vegetation types. Three ways of getting genera information are discussed, including the vertical profile method, methods relying on geometry derived from individual tree point clouds, and methods that incorporate spectral information. The fourth section provides a case study for identifying potential tree hazards along a powerline corridor in Ontario, Canada. We conclude by discussing the future of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ALS:

Airborne laser scanning

BA:

Basal area

CHM:

Canopy height model

DBH:

Diameter at breast height

DEM:

Digital elevation model

DSM:

Digital surface model

DTM:

Digital terrain model

GIS:

Geographical information system

GLAS:

Geoscience laser altimeter system

GPS:

Global positioning system

ICESat:

Ice, cloud and land elevation satellite

IMU:

Inertial measurement unit

L t :

The travel time of a light pulse

LiDAR:

Light detection and ranging

MODIS:

Moderate resolution imaging spectroradiometer

MVCD:

Minimum vegetation clearance distance

p :

Number of points projected into a horizontal area (i.e., the point density)

R :

Range for LiDAR

SLS:

Spaceborne laser scanning

t L :

The total travel time of a single energy pulse

t rise :

Rise time of an energy pulse

TLS:

Terrestrial laser scanning

UAV:

Unmanned aerial vehicle

References

  • Abshire JB, Sun X, Riris H et al (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32:L21S02

    Article  Google Scholar 

  • Antonarakis AS, Richards KS, Brasington J (2009) Object-based land cover classification using airborne LiDAR. Remote Sens Environ 112(6):2988–2998

    Article  Google Scholar 

  • Baltsavias E, Gruen A, Eisenbeiss H et al (2008) High-quality image matching and automated generation of three-dimensional tree models. Int J Remote Sens 29:1243–1259

    Article  Google Scholar 

  • Bouvier M, Durrieu S, Richard AF et al (2015) Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens Environ 156:322–334

    Article  Google Scholar 

  • Brandtberg T (2007) Classifying individual tree species under leaf-off and leaf-on conditions using airborne LIDAR. ISPRS J Photogramm Remote Sens 61(5):325–340

    Article  Google Scholar 

  • Brandtberg T, Warner TA, Landenberger RE et al (2003) Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens Environ 85(3):290–303

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brennan R, Webster TL (2006) Object-oriented land cover classification of LiDAR-derived surfaces. Can J Remote Sens 32(2):162–172

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. UN Food and Agric Org, Rome

    Google Scholar 

  • Caruso C, Quarta F (1998) Interpolation methods comparison. Comput Math Appl 35(12):109–126

    Article  Google Scholar 

  • Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20(4):405–421

    Article  Google Scholar 

  • Doneus M, Briese C, Studnicka N (2010) Analysis of full-waveform ALS data by simultaneously acquired TLS data: towards an advanced DTM generation in wooded areas. Int Arch Photogramm Remote Sens Spat Inf Sci 38(Part 7B):193–198

    Google Scholar 

  • Douglas ES, Strahler A, Martel J et al (2012) DWEL: a dual-wavelength echidna lidar for ground-based forest scanning. In: Proceedings of international geoscience and remote sensing symposium 2012. Munich, Germany 22–27 July 2012, pp 1–4

    Google Scholar 

  • Drake JB, Knox RG, Ralph O et al (2003) Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr 12(2):147–159

    Article  Google Scholar 

  • Evans JS, Hudak AT (2007) A multi-scale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Trans Geosci Remote Sensing 45:1029–1038

    Article  Google Scholar 

  • Falkowski MJ, Evans JS, Martinuzzi S et al (2009) Characterizing forest succession with lidar data: an evaluation for the inland northwest, USA. Remote Sens Environ 113:946–956

    Article  Google Scholar 

  • Gaulton R, Danson FM, Ramirez FA et al (2013) The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sens Environ 132:32–39

    Article  Google Scholar 

  • Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32:L21S10

    Article  Google Scholar 

  • Heurich M (2008) Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. For Ecol Manage 255(7):2416–2433

    Article  Google Scholar 

  • Hilker T, Wulder MA, Coops NC (2008) Update of forest inventory data with lidar and high spatial resolution satellite imagery. Can J Remote Sens 34(1):5–12

    Article  Google Scholar 

  • Hill RA, Thomson AG (2005) Mapping woodland species composition and structure using airborne spectral and LiDAR data. Int J Remote Sens 26:3763–3779

    Article  Google Scholar 

  • Holmgren J (2004) Prediction of tree height, basal area and stem volume using airborne laser scanning. Scand J For Res 19:543–553

    Article  Google Scholar 

  • Holmgren J, Persson Ã… (2004) Identifying species of individual trees using airborne laser scanning. Remote Sens Environ 90(4):415–423

    Article  Google Scholar 

  • Holmgren J, Persson Ã…, Söderman U (2008) Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int J Remote Sens 29(5):1537–1552

    Article  Google Scholar 

  • Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finland 16(2):27–42

    Google Scholar 

  • Hyyppä J, Kelle O, Lehikoinen M et al (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geosci Remote Sens 39:969–975

    Article  Google Scholar 

  • Hyyppä J, Hyyppä H, Leckie D et al (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366

    Article  Google Scholar 

  • Hyyppä J, Yu X, Hyyppä H et al (2012) Advances in forest inventory using airborne laser scanning. Remote Sens (Basel) 4:1190–1207

    Article  Google Scholar 

  • Jenkins C, Chojnacky DC, Heath LS et al (2003) National-scale biomass estimators for United States tree species. For Sci 49(1):12–35

    Google Scholar 

  • Kato A, Moskal LM, Schiess P et al (2009) Capturing tree crown formation through implicit surface reconstruction using airborne lidar data. Remote Sens Environ 113(6):1148–1162

    Article  Google Scholar 

  • Ke Y, Lindi JQ, Im J (2010) Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens Environ 114(6):1141–1154

    Article  Google Scholar 

  • Kim S, McGaughey RJ, Andersen HE et al (2009) Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens Environ 113(8):1575–1586

    Article  Google Scholar 

  • Kim S, Hinckley T, Briggs D (2011) Classifying individual tree genera using stepwise cluster analysis based on height and intensity metrics derived from airborne laser scanner data. Remote Sens Environ 115(12):3329–3342

    Article  Google Scholar 

  • Ko C, Remmel TK, Sohn G (2012) Mapping tree genera using discrete LiDAR and geometric tree metrics. BOSQUE 33(3):313–319

    Article  Google Scholar 

  • Ko C, Sohn G, Remmel TK (2013) Tree genera classification with geometric features from high-density airborne LiDAR. Can J Remote Sens 39(S1):S1–S13

    Google Scholar 

  • Ko C, Sohn G, Remmel TK et al (2014) Hybrid ensemble classification of tree genera using airborne LiDAR data. Remote Sens (Basel) 6:11225–11243

    Article  Google Scholar 

  • Koch B, Heyder U, Weinacker H (2006) Detection of individual tree crowns in airborne lidar data. Photogramm Eng Remote Sens 72(4):357–363

    Article  Google Scholar 

  • Korpela I, Dahlin B, Schäfer H et al (2007) Single-tree forest inventory using lidar and aerial images for 3D treetop positioning, species recognition, height and crown width estimation. In: Rönnholm P, Hyyppä H, Hyyppä J. (eds) Proceedings of ISPRS workshop on laser scanning, Espoo, Finland, 12–14 September 2007, pp 227–233

    Google Scholar 

  • Korpela I, Ørka HO, Maltamo M et al (2010) Tree species classification using airborne LiDAR—effects of stand and tree parameters, downsizing of training set, intensity normalization and sensor type. Silva Fennica 44(2):319–339

    Article  Google Scholar 

  • Koukoulas S, Blackburn GA (2005) Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi-spectral remotely sensed data. Int J Remote Sens 26(3):431–455

    Article  Google Scholar 

  • Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with aerial laser scanner data. ISPRS J Photogramm 53(4):193–203

    Article  Google Scholar 

  • Leckie DG, Gougeion FA, Hill DA et al (2003) Combined high-density lidar and multispectral imagery for individual tree crown analysis. Can J Remote Sens 29(5):633–649

    Article  Google Scholar 

  • Lefsky MA (2010) A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys Res Lett 37:L15401

    Article  Google Scholar 

  • Lefsky MA, Harding DJ, Cohen WB et al (1999) Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens Environ 67(1):83–98

    Article  Google Scholar 

  • Lefsky MA, Harding DJ, Keller M et al (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02

    Article  Google Scholar 

  • Liang X, Litkey P, Hyyppä J et al (2012) Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans Geosci Remote Sens 50:661–670

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2(3):18–22

    Google Scholar 

  • Lim K, Treitz P, Baldwin K et al (2003) Lidar remote sensing of biophysical properties of tolerant northern hardwood forests. Can J Remote Sens 29:658–678

    Article  Google Scholar 

  • Los SO, Rosette JAB, Kljun N et al (2012) Vegetation height and cover fraction between 60°S and 60°N from ICESat GLAS data. Geosci Model Dev 5:413–432

    Article  Google Scholar 

  • Magnusson M, Fransson JES, Holmgren J (2007) Effects on estimation accuracy of forest variables using different pulse density of laser data. Forest Sci 53:619–626

    Google Scholar 

  • Mallet C, Bretar F (2009) Full-waveform topographic lidar: state-of-the-art. ISPRS J Photogramm 64(1):1–16

    Article  Google Scholar 

  • Maltamo M, Næsset E, Vauhkonen J (2014) Forestry applications of airborne laser scanning: concepts and case studies. Springer, Dordrecht

    Book  Google Scholar 

  • Maltamo M, BollandsÃ¥s OM, Gobakken T, Næsset E (2016) Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of airborne laser scanning. Can J For Res 46(9):1138–1144

    Article  Google Scholar 

  • Means JE, Acker SA, Fitt BJ et al (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66(11):1367–1371

    Google Scholar 

  • Moffiet T, Mengersen K, Witte C et al (2005) Airborne laser scanning: exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species. ISPRS J Photogramm 59(5):289–309

    Article  Google Scholar 

  • Monk CD, Child GI, Nicholson SA (1970) Biomass, litter and leaf surface area estimates of an oak-hickory forest. Oikos 21:134–141

    Article  Google Scholar 

  • Morsdorf F, Meier E, Allgöwer B et al (2003) Clustering in airborne laser scanning raw data for segmentation of single trees. Int Arch Photogramm Remote Sens Spatial Info Sci 34(3):W13

    Google Scholar 

  • Morsdorf F, Meier E, Kötz B et al (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92(3):353–362

    Article  Google Scholar 

  • Morsdorf F, Marell A, Koetz B et al (2010) Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114(7):1403–1415

    Article  Google Scholar 

  • Moskal LM, Zheng G (2012) Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sens (Basel) 4(1):1–20

    Google Scholar 

  • Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61(2):246–253

    Article  Google Scholar 

  • Næsset E (2004) Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res 19(2):164–179

    Article  Google Scholar 

  • Næsset E, BollandsÃ¥s OM, Gobakken T (2005) Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens Environ 94(4):541–553

    Article  Google Scholar 

  • Nelson R (2013) How did we get here? An early history of forestry LiDAR. Can J Remote Sens 39:6–17

    Article  Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG et al (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117(1–3):149–167

    Article  Google Scholar 

  • Ørka HO, Næsset E, BollandsÃ¥s OM (2007) Utilizing airborne laser intensity for tree species classification. Int Arch Photogramm Remote Sens Spatial Inf Sci 36(Part 3):300–304

    Google Scholar 

  • Ørka HO, Næsset E, BollandsÃ¥s OM (2009) Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ 113(6):1163–1174

    Article  Google Scholar 

  • Persson A, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68(9):925–932

    Google Scholar 

  • Persson A, Holmgren J, Söderman U (2006) Identification of individual trees by combining very high resolution laser data with multi-spectral imagines. Workshop on 3D Remote Sensing in Forestry, Vienna, Austria

    Google Scholar 

  • Petrie G, Toth CK (2009) Introduction to laser ranging, profiling and scanning. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press, Boca Raton, FL, pp 1–27

    Google Scholar 

  • Pfeifer N, Mandlburger G (2009) LiDAR data filtering and DTM generation. In: Shan J, Toth CK (eds) Topographic laser scanning and ranging. Principles and processing. CRC Press, Boca Raton, FL, pp 307–334

    Google Scholar 

  • Popescu SC, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm Eng Remote Sens 70(5):589–604

    Article  Google Scholar 

  • Popescu SC, Zhao K (2008) A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sens Environ 112(3):767–781

    Article  Google Scholar 

  • Popescu SC, Wynne RH, Nelson R (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577

    Article  Google Scholar 

  • Reitberger J, Heurich M, Krzystek P et al (2007) Single tree detection in forest areas with high-density LiDAR data. Int Arch Photogramm Remote Sens Spatial Inf Sci 36:139–144

    Google Scholar 

  • Reitberger J, Cl S, Krzystek P et al (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64(6):561–574

    Article  Google Scholar 

  • Rempel RC, Parker AK (1964) An information note on an airborne laser terrain profiler for micro-relief studies. In: Proceedings, 3rd symposium on remote sensing of environment, University of Michigan Institute of Science and Technology, pp 321–337

    Google Scholar 

  • Ritchie JC (1996) Remote sensing applications to hydrology: airborne laser altimeters. Hydrol Sci J 41(4):625–636

    Article  Google Scholar 

  • Rosnell T, Honkavaara E (2012) Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12:453–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambridge M, Braun J, McQueen H (1995) Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophys J Int 122(3):837–857

    Article  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the ACM annual conference/annual meeting. Association for Computing Machinery, New York, NY, pp 517–524

    Google Scholar 

  • Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data. John Wiley & Sons, New York NY, pp 21–36

    Google Scholar 

  • Simard M, Pinto N, Fisher JB et al (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res: Biogeosci 116:G04021

    Article  Google Scholar 

  • Sithole G, Vosselman G (2004) Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS J Photogramm Remote Sens 59(1):85–101

    Article  Google Scholar 

  • Solberg S, Næsset E, BollandsÃ¥s OM (2006) Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm Eng Remote Sens 72:1369–1378

    Article  Google Scholar 

  • St-Onge B, Vega C, Fournier RA et al (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Remote Sens 29(11):3343–3364

    Article  Google Scholar 

  • Strunk J, Temesgen H, Andersen HE et al (2012) Effects of pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Can J Remote Sens 38(5):644–654

    Article  Google Scholar 

  • Suratno A, Seielstad C, Queen L (2009) Tree species identification in mixed coniferous forest using airborne laser scanning. ISPRS J Photogramm Remote Sens 64(6):683–693

    Article  Google Scholar 

  • Tansey K, Selmes N, Anstee A et al (2009) Estimating tree and stand variables in a Corsican pine woodland from terrestrial laser scanner data. Int J Remote Sens 2009(30):5195–5209

    Article  Google Scholar 

  • Tóvári D, Pfeifer N (2005) Segmentation based robust interpolation—a new approach to laser data filtering. Int Arch Photogramm Remote Sens Spatial Inf Sci 36(3/W19):79–84

    Google Scholar 

  • Treitz P, Lim K, Woods M et al (2012) LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sens (Basel) 4(4):830–848

    Article  Google Scholar 

  • Vauhkonen J, Tokola T, Maltamo M et al (2008) Effects of pulse density on predicting characteristics of individual trees of Scandinavian commercial species using alpha shape metrics based on ALS data. Can J Remote Sens 34(Suppl.2):S441–S459

    Article  Google Scholar 

  • Vauhkonen J, Tokola T, Packalén P et al (2009) Identification of Scandinavian commercial species of individual trees from airborne laser scanning data using alpha shape metrics. For Sci 55(1):37–47

    Google Scholar 

  • Vauhkonen J, Korpela I, Maltamo M et al (2010) Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sens Environ 114(6):1263–1276

    Article  Google Scholar 

  • Vauhkonen J, Ene L, Gupta S et al (2011) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1):27–40

    Article  Google Scholar 

  • Vauhkonen J, Maltamo M, McRoberts RE et al (2014) Introduction to forestry applications of airborne laser scanning. In: Maltamo M, Næsset E, Vauhkonen J (eds) Forestry applications of airborne laser scanning: concepts and case studies. Springer, Dordrecht, pp 1–18

    Google Scholar 

  • Vosselman G (2000) Slope based filtering of laser altimetry data. Int Arch Photogramm Remote Sens 33(B3/2 Part 3):935–942

    Google Scholar 

  • Wallace L, Lucieer A, Watson C et al (2012) Development of a UAV–LiDAR system with application to forest inventory. Remote Sens (Basel) 4:1519–1543

    Article  Google Scholar 

  • Wang CK, Tseng YH, Chu HJ (2014) Airborne dual-wavelength LiDAR data for classifying land cover. Remote Sens (Basel) 6(1):700–715

    Article  Google Scholar 

  • Watt PJ, Donoghue DNM (2005) Measuring forest structure with terrestrial laser scanning. Int J Remote Sens 26:1437–1446

    Article  Google Scholar 

  • Weinacker H, Koch B, Heyder U et al (2004) Development of filtering, segmentation and modelling modules for lidar and multispectral data as a fundament of an automatic forest inventory system. Int Arch Photogramm Remote Sens Spatial Inf Sci 36(Part 8):50–55

    Google Scholar 

  • White JC, Wulder MA, Vastaranta M et al (2013) The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4(3):518–536

    Article  Google Scholar 

  • Woods M, Pitt D, Penner M et al (2010) Operational implementation of a LiDAR inventory in boreal Ontario. For Chron 87(4):512–528

    Article  Google Scholar 

  • Wulder MA, Seemann D (2003) Forest inventory height update through the integration of lidar data with segmented Landsat imagery. Can J Remote Sens 29(5):536–543

    Article  Google Scholar 

  • Yao T, Yang X, Zhao F et al (2011) Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens Environ 115(11):2965–2974

    Article  Google Scholar 

  • Yao W, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380

    Article  Google Scholar 

  • Yu X, Hyyppä J, Kaartinen H et al (2004) Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens Environ 90(4):451–462

    Article  Google Scholar 

  • Yu X, Liang X, Hyyppä J et al (2013) Stem biomass estimation based on stem reconstruction from terrestrial laser scanning point clouds. Remote Sens Lett 4(4):344–353

    Article  Google Scholar 

  • Zhao K, Popescu S, Nelson R (2009) Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens Environ 113(1):182–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ko, C., Remmel, T.K. (2017). Airborne LiDAR Applications in Forest Landscapes. In: Remmel, T., Perera, A. (eds) Mapping Forest Landscape Patterns. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7331-6_4

Download citation

Publish with us

Policies and ethics