Advertisement

A Word in the Hand: The Gestural Origins of Language

Chapter
Part of the Innovations in Cognitive Neuroscience book series (Innovations Cogn.Neuroscience)

Abstract

It is commonly held that language evolved de novo in our own species, within the past 100,000 years. This is at odds with Darwinian theory which implies that language, like other complex systems, must have evolved incrementally. One approach to such a theory is to suppose that language evolved from manual gestures. Several lines support this. These include the nature of the primate mirror system and its homology with the language circuits in the human brain, the superiority of manual over vocal intentionality in great apes, the ready invention of sophisticated signed languages by the deaf, the correlation between handedness and cerebral asymmetry for language, and the critical role of pointing in the way young children learn language. A gradual switch from manual to facial and vocal expression may have occurred late in hominin evolution, with speech reaching its present level of autonomy only in our own species, Homo sapiens.

Keywords

Cerebral asymmetry Evolution Gesture Great apes Handedness Mirror neurons Pointing Sign language 

Notes

Acknowledgments

I owe thanks to many people, including (but not restricted to) Michael Arbib, Giovanni Berlucchi, Louis-Jean Boë, Tecumseh Fitch, Greg Hickok, William Hopkins, Nicholas Humphrey, James Hurford, Adam Kendon, Maurizio Gentilucci, Russell Gray, Susan Goldin-Meadow, David Leavens, Giacomo Rizzolatti, Thomas Suddendorf, and Virginia Volterra.

References

  1. Annett, M. (2002). Handedness and brain asymmetry: The right shift theory. Park Drive: Psychology Press.Google Scholar
  2. Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28, 105–124.PubMedGoogle Scholar
  3. Armstrong, D. F., Stokoe, W. C., & Wilcox, S. E. (1995). Gesture and the nature of language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Badzakova-Trajkov, G., Häberling, I. S., Roberts, R. P., & Corballis, M. C. (2010). Cerebral asymmetries: Complementary and independent processes. PloS One, 5, e9682.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barney, A., Martelli, S., Serrurier, A., & Steele, J. (2012). Articulatory capacity of Neanderthals, a very recent and human-like fossil hominin. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 88–102.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Biro, D., Sousa, C., & Matsuzawa, T. (2006). Ontogeny and cultural propagation of tool use by wild chimpanzees at Bossou, Guinea: Case studies in nut cracking and leaf folding. In T. Matsuzawa, M. Tomonaga, & M. Tanaka (Eds.), Cognitive development in chimpanzees (pp. 476–508). Tokyo: Springer.Google Scholar
  7. Boë, L.-J., Heim, J.-L., Honda, K., Maeda, S., Badin, P., & Abry, C. (2007). The vocal tract of newborn humans and Neanderthals: Acoustic capabilities and consequences for the debate on the origin of language. A reply to Lieberman (2007a). Journal of Phonetics, 35, 564–581.CrossRefGoogle Scholar
  8. Boesch, C. (1991). Handedness in wild chimpanzees. International Journal of Primatology, 12, 541–558.CrossRefGoogle Scholar
  9. Boesch, C., Head, J., & Robbins, M. M. (2009). Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon. Journal of Human Evolution, 56, 560–569.PubMedCrossRefGoogle Scholar
  10. Bogart, S. L., & Pruetz, J. D. (2008). Ecological context of savanna chimpanzee (Pan troglodytes Verus) termite fishing at Fongoli, Senegal. American Journal of Primatology, 70, 605–612.PubMedCrossRefGoogle Scholar
  11. Burling, R. (1999). Motivation, conventionalization, and arbitrariness in the origin of language. In B. J. King (Ed.), The origins of language: What nonhuman primates can tell us (pp. 307–350). Santa Fe, NM: School of American Research Press.Google Scholar
  12. Calvert, G. A., & Campbell, R. (2003). Reading speech from still and moving faces: The neural substrates of visible speech. Journal of Cognitive Neuroscience, 15, 57–70.PubMedCrossRefGoogle Scholar
  13. Capirci, O., & Volterra, V. (2008). Gesture and speech: The emergence and development of a strong and changing partnership. Gesture, 8, 22–44.CrossRefGoogle Scholar
  14. Chomsky, N. (2007). Biolinguistic explorations: Design, development, evolution. International Journal of Philosophical Studies, 15, 1–21.CrossRefGoogle Scholar
  15. Chomsky, N. (2010). Some simple evo devo theses: How true might they be for language. In R. K. Larson, V. Déprez, & H. Yamakido (Eds.), The evolution of human language (pp. 45–62). Cambridge: Cambridge University Press.Google Scholar
  16. Christiansen, M. H., & Kirby, S. (2003). Language evolution: The hardest problem in science? Studies in the Evolution of Language, 3, 1–15.Google Scholar
  17. Corballis, M. C. (1991). The lopsided ape: Evolution of the generative mind, Oxford University Press on Demand. Oxford: Oxford University Press.Google Scholar
  18. Corballis, M. C. (2002). From hand to mouth: The origins of language. Princeton, NJ: Princeton University Press.Google Scholar
  19. Corballis, M. C. (2004). The origins of modernity: Was autonomous speech the critical factor? Psychological Review, 111, 543.PubMedCrossRefGoogle Scholar
  20. Corballis, M. C. (2009). The evolution of language. Annals of the New York Academy of Sciences, 1156, 19–43.PubMedCrossRefGoogle Scholar
  21. Corballis, M. C., Badzakova-Trajkov, G., & Häberling, I. S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 1–17.PubMedCrossRefGoogle Scholar
  22. Critchley, M. (1939). The language of gesture. London: Edward Arnold & Co.Google Scholar
  23. Critchley, M. (1975). Silent language. Oxford: Butterworth-Heinemann.Google Scholar
  24. Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.Google Scholar
  25. de Condillac É. B. (1971) An essay on the origin of human knowledge: Being a supplement to Mr. Locke’s essay on the human understanding [Essai sur l’origine des connaissances humaines. English]. Cambridge University Press: Cambridge. Scholars’ Facsimiles & Reprints.Google Scholar
  26. Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of culture and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  27. Dunbar, R. (1998). Grooming, gossip, and the evolution of language. Cambridge, MA: Harvard University Press.Google Scholar
  28. Egnor, S. R., & Hauser, M. D. (2004). A paradox in the evolution of primate vocal learning. Trends in Neurosciences, 27, 649–654.PubMedCrossRefGoogle Scholar
  29. Emmorey, K. (2001). Language, cognition, and the brain: Insights from sign language research. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  30. Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.PubMedCrossRefGoogle Scholar
  31. Evans, N. (2009). Dying words: Endangered languages and what they have to tell us. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  32. Evans, N., & Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32, 429–448.PubMedCrossRefGoogle Scholar
  33. Everett, D. (2005). Cultural constraints on grammar and cognition in Piraha: Another look at the design features of human language. Current Anthropology, 46, 621–646.CrossRefGoogle Scholar
  34. Fonagy, P., & Target, M. (2007). The rooting of the mind in the body: New links between attachment theory and psychoanalytic thought. Journal of the American Psychoanalytic Association, 55, 411–456.PubMedCrossRefGoogle Scholar
  35. Foundas, A. L., Leonard, C. M., Gilmore, R. L., Fennell, E. B., & Heilman, K. M. (1996). Pars triangularis asymmetry and language dominance. Proceedings of the National Academy of Sciences, 93, 719–722.CrossRefGoogle Scholar
  36. Fowler, C. A., Shankweiler, D., & Studdert-Kennedy, M. (2016). “Perception of the speech code” revisited: Speech is alphabetic after all. Psychological Review, 123, 125.PubMedCrossRefGoogle Scholar
  37. Fujita, K. (2009). A prospect for evolutionary adequacy: Merge and the evolution and development of human language. Biolinguistics, 3, 128–153.Google Scholar
  38. Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13, 361–377.CrossRefGoogle Scholar
  39. Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279, 220–222.PubMedCrossRefGoogle Scholar
  40. Gardner, R. A., & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science, 165, 664–672.PubMedCrossRefGoogle Scholar
  41. Goldin-Meadow, S., McNeill, D., & Singleton, J. (1996). Silence is liberating: Removing the handcuffs on grammatical expression in the manual modality. Psychological Review, 103, 34–54.PubMedCrossRefGoogle Scholar
  42. Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge, MA: Belknap Press.Google Scholar
  43. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
  44. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–722.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hayes, C. (1951). The ape in our house. London: Gollancz.Google Scholar
  46. Hewes, G. W., Andrew, R. J., Carini, L., Choe, H., Allen Gardner, R., et al. (1973). Primate communication and the gestural origin of language [and comments and reply]. Current Anthropology, 14, 5–24.CrossRefGoogle Scholar
  47. Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21, 1229–1243.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hickok, G., Pickell, H., Klima, E., & Bellugi, U. (2009). Neural dissociation in the production of lexical versus classifier signs in ASL: Distinct patterns of hemispheric asymmetry. Neuropsychologia, 47, 382–387.PubMedCrossRefGoogle Scholar
  49. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.PubMedCrossRefGoogle Scholar
  50. Hobaiter, C., & Byrne, R. W. (2011). Serial gesturing by wild chimpanzees: Its nature and function for communication. Animal Cognition, 14, 827–838.PubMedCrossRefGoogle Scholar
  51. Hopkins, W. D. (1996). Chimpanzee handedness revisited: 55 years since finch (1941). Psychonomic Bulletin & Review, 3, 449–457.CrossRefGoogle Scholar
  52. Hopkins, W. D., & Leavens, D. A. (1998). Hand use and gestural communication in chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 112, 95.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hopkins, W. D., Marino, L., Rilling, J. K., & MacGregor, L. A. (1998). Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). Neuroreport, 9, 2913–2918.PubMedCrossRefGoogle Scholar
  54. Hopkins, W. D., & Nir, T. M. (2010). Planum temporale surface area and grey matter asymmetries in chimpanzees (Pan troglodytes): The effect of handedness and comparison with findings in humans. Behavioural Brain Research, 208, 436–443.PubMedCrossRefGoogle Scholar
  55. Hopkins, W. D., Taglialatela, J. P., & Leavens, D. A. (2007). Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Animal Behaviour, 73, 281–286.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Humle, T., & Matsuzawa, T. (2009). Laterality in hand use across four tool-use behaviors among the wild chimpanzees of Bossou, Guinea, West Africa. American Journal of Primatology, 71, 40–48.PubMedCrossRefGoogle Scholar
  57. Iverson, J. M., & Goldin-Meadow, S. (2005). Gesture paves the way for language development. Psychological Science, 16, 367–371.PubMedCrossRefGoogle Scholar
  58. Jarvis, E. D. (2006). Selection for and against vocal learning in birds and mammals. Ornithological Science, 5, 5–14.CrossRefGoogle Scholar
  59. Johansson, S. (2013). The talking Neanderthals: What do fossils, genetics, and archeology say? Biolinguistics, 7, 35–74.Google Scholar
  60. Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26, 235–258.CrossRefGoogle Scholar
  61. Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: Evidence for “fast mapping”. Science, 304, 1682–1683.PubMedCrossRefGoogle Scholar
  62. Kellogg, W. N., & Kellogg, L. A. (1933). The ape and the child: A study of environmental influence upon early behavior. JAMA, 101(15), 1181.Google Scholar
  63. Kelly, S. D., Özyürek, A., & Maris, E. (2009). Two sides of the same coin speech and gesture mutually interact to enhance comprehension. Psychological Science, 21(2), 260–267.PubMedCrossRefGoogle Scholar
  64. Kendon, A. (2004). Gesture: Visible action as utterance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846–848.PubMedCrossRefGoogle Scholar
  66. Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., et al. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17, 1908–1912.PubMedCrossRefGoogle Scholar
  67. Ladygina-Kohts, N. N., de Waal, F., & Wekker, B. T. (2002). Infant chimpanzee and human child: A classic 1935 comparative study of ape emotions and intelligence. Oxford: Oxford University Press.Google Scholar
  68. Lieberman, P. (2007). The evolution of human speech: Its anatomical and neural bases. Current Anthropology, 48, 39–66.CrossRefGoogle Scholar
  69. Lonsdorf, E. V., & Hopkins, W. D. (2005). Wild chimpanzees show population-level handedness for tool use. Proceedings of the National Academy of Sciences of the United States of America, 102, 12634–12638.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marean, C. W. (2010). Pinnacle point cave 13B (Western Cape Province, South Africa) in context: The cape floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59, 425–443.PubMedCrossRefGoogle Scholar
  71. Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., et al. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.PubMedCrossRefGoogle Scholar
  72. Marshall, A. J., Wrangham, R. W., & Arcadi, A. C. (1999). Does learning affect the structure of vocalizations in chimpanzees? Animal Behaviour, 58, 825–830.PubMedCrossRefGoogle Scholar
  73. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.PubMedCrossRefGoogle Scholar
  74. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–748.PubMedCrossRefGoogle Scholar
  75. McManus, C. (2002). Right hand, left hand: The origins of asymmetry in brains, bodies, atoms and cultures. London: Weidenfeld & Nicolson.Google Scholar
  76. McNeill, D. (1985). So you think gestures are nonverbal? Psychological Review, 92, 350.CrossRefGoogle Scholar
  77. Mellars, P. (2005). The impossible coincidence. A single-species model for the origins of modern human behavior in Europe evolutionary. Anthropology: Issues, News, and Reviews, 14, 12–27.Google Scholar
  78. Mestres-Missé, A., Turner, R., & Friederici, A. D. (2012). An anterior–posterior gradient of cognitive control within the dorsomedial striatum. NeuroImage, 62, 41–47.PubMedCrossRefGoogle Scholar
  79. Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., et al. (2012). A high-coverage genome sequence from an archaic Denisovan individual. Science, 338, 222–226.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mithun, M. (1999). The languages of native North America. Cambridge: Cambridge University Press.Google Scholar
  81. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Patterson, F. G. P., & Gordon, W. (2001). Twenty-seven years of project Koko and Michael. In B. M. F. Galdikas, N. E. Briggs, L. K. Sheeran, G. L. Shapiro, & J. Goodall (Eds.), All apes great and small: African apes (Vol. 1, pp. 165–176). New York: Springer US.Google Scholar
  83. Petkov, C. I., & Jarvis, E. (2012). Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4, 12.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pika, S., & Mitani, J. C. (2009). The directed scratch: Evidence for a referential gesture in chimpanzees. The Prehistory of Language, 1, 166–181.CrossRefGoogle Scholar
  85. Pilley, J. W., & Reid, A. K. (2011). Border collie comprehends object names as verbal referents. Behavioural Processes, 86, 184–195.PubMedCrossRefGoogle Scholar
  86. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707–727.CrossRefGoogle Scholar
  87. Pollick, A. S., & De Waal, F. B. (2007). Ape gestures and language evolution. Proceedings of the National Academy of Sciences, 104, 8184–8189.CrossRefGoogle Scholar
  88. Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. Proceedings of the National Academy of Sciences, 104, 13861–13867.CrossRefGoogle Scholar
  89. Pruetz, J. D., & Bertolani, P. (2007). Savanna chimpanzees, Pan troglodytes Verus, hunt with tools. Current Biology, 17, 412–417.PubMedCrossRefGoogle Scholar
  90. Ptak, S. E., Enard, W., Wiebe, V., Hellmann, I., Krause, J., Lachmann, M., et al. (2009). Linkage disequilibrium extends across putative selected sites in FOXP2. Molecular Biology and Evolution, 26, 2181–2184.Google Scholar
  91. Quintilian. (1920). Institutio Oratoria XI: Loeb classical library edition. (J. S. Watson, Trans.). Cambridge, MA: Harvard University Press.Google Scholar
  92. Raffaele, P. (2006). Speaking bonobo. Smithsonian Magazine, 37, 74.Google Scholar
  93. Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., et al. (2010). Genetic history of an archaic hominin group from Denisova cave in Siberia. Nature, 468, 1053–1060.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. Experimental Brain Research, 71, 491–507.PubMedCrossRefGoogle Scholar
  95. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  96. Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the brain: How our minds share actions and emotions. Oxford: Oxford University Press.Google Scholar
  97. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.PubMedCrossRefGoogle Scholar
  98. Rousseau, J. J. (1782). Essai sur l’origine des langues. Geneva. English edition.: (J. H. Moran & C. Alexander, Trans. (1986). On the origin of language). Chicago: University of Chicago Press.Google Scholar
  99. Russell, B. A., Cerny, F. J., & Stathopoulos, E. T. (1998). Effects of varied vocal intensity on ventilation and energy expenditure in women and men. Journal of Speech, Language, and Hearing Research, 41, 239–248.PubMedCrossRefGoogle Scholar
  100. Savage-Rumbaugh, E. S., Shanker, S., & Taylor, T. J. (1998). Apes, language, and the human mind. Oxford: Oxford University Press on Demand.Google Scholar
  101. Shea, J. J. (2010). Homo sapiens Is as Homo sapiens was: Behavioral variability versus “behavioral modernity” in Paleolithic archaeology. Current Anthropology, 52, 1–35.CrossRefGoogle Scholar
  102. Slocombe, K. E., Kaller, T., Call, J., & Zuberbühler, K. (2010). Chimpanzees extract social information from agonistic screams. PloS One, 5, e11473.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Slocombe, K. E., & Zuberbühler, K. (2005). Functionally referential communication in a chimpanzee. Current Biology, 15, 1779–1784.PubMedCrossRefGoogle Scholar
  104. Stokoe, W. C. (2001). Language in hand: Why sign came before speech. Washington D.C.: Gallaudet University Press.Google Scholar
  105. Stout, D., & Chaminade, T. (2012). Stone tools, language and the brain in human evolution. Phil Trans R Soc B, 367, 75–87.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Studdert-Kennedy, M. (2005). How did language go discrete? In M. Tallerman (Ed.), Language origins: Perspectives on evolution (pp. 48–67). Oxford: Oxford University Press.Google Scholar
  107. Tattersall, I. (2012). Masters of the planet: The search for our human origins. London: Macmillan.Google Scholar
  108. Tomasello, M. (2008). Origins of human communication. Cambridge, MA: MIT press.Google Scholar
  109. Tooby, J., & DeVore, I. (1987). The reconstruction of hominid evolution through strategic modeling. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models (pp. 183–237). Albany, NY: SUNY Press.Google Scholar
  110. Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing: A neurophysiological study. Neuron, 31, 155–165.Google Scholar
  111. van der Lely, H. K., & Pinker, S. (2014). The biological basis of language: Insight from developmental grammatical impairments. Trends in Cognitive Sciences, 18, 586–595.PubMedCrossRefGoogle Scholar
  112. Vingerhoets, G., Acke, F., Alderweireldt, A. S., Nys, J., Vandemaele, P., & Achten, E. (2012). Cerebral lateralization of praxis in right-and left-handedness: Same pattern, different strength. Human Brain Mapping, 33, 763–777.PubMedCrossRefGoogle Scholar
  113. Wada, J. A., Clarke, R., & Hamm, A. (1975). Cerebral hemispheric asymmetry in humans: Cortical speech zones in 100 adult and 100 infant brains. Archives of Neurology, 32, 239–246.PubMedCrossRefGoogle Scholar
  114. Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41, 989–994.PubMedCrossRefGoogle Scholar
  115. Wundt, W. (1900). Die sprache (Vol. 2). Leipzig: Enghelman.Google Scholar
  116. Xu, J., Gannon, P. J., Emmorey, K., Smith, J. F., & Braun, A. R. (2009). Symbolic gestures and spoken language are processed by a common neural system. Proceedings of the National Academy of Sciences, 106, 20664–20669.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of PsychologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations