Skip to main content

Genome Editing for the β-Hemoglobinopathies

  • Chapter
  • First Online:
Gene and Cell Therapies for Beta-Globinopathies

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 1013))

Abstract

The β-hemoglobinopathies are diverse set of disorders caused by mutations in the β-globin (HBB) gene. Because HBB protein is a critical component (along with α-globin, heme, and iron) of hemoglobin, the molecule essential for oxygen delivery to tissues, mutations in HBB can result in lethal diseases or diseases with multi-organ dysfunction. HBB mutations can be roughly divided into two categories: those that cause a dysfunctional protein (such as sickle cell disease but also including varied diseases caused by high-affinity hemoglobins, low-affinity hemoglobins, and methemoglobinemia) and those that cause the insufficient production of HBB protein (β-thalassemia). Sickle cell disease and β-thalassemia are both the most prevalent and the most devastating of the β-hemoglobinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marotta CA, Wilson JT, Forget BG, Weissman SM. Human B-Globin Messenger RNA III. Nucleotide Sequences Derived from Complementary DNA. J Biol Chem. 1977;252(14):5040–53.

    Google Scholar 

  2. Ingram VM. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature. 1957;180(4581):326–8.

    Google Scholar 

  3. Murayama M. Molecular mechanism of red cell “sickling”. Science. 1966;153(3732):145–9.

    Google Scholar 

  4. Murayama M. Tertiary structure of sickle cell hemoglobin and its functional significance. Journal of cellular physiology. 1966;67(3):Suppl 1:21–32.

    Google Scholar 

  5. Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Jama. 2014;312(10):1063. doi:10.1001/jama.2014.11011.

  6. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. The New England journal of medicine. 1994;330(23):1639–44. doi:10.1056/NEJM199406093302303.

  7. Lanzkron S, Carroll CP, Haywood C, Jr. Mortality rates and age at death from sickle cell disease: U.S., 1979-2005. Public health reports. 2013;128(2):110–6.

    Google Scholar 

  8. Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine. 2005;84(6):363–76.

    Google Scholar 

  9. Gaziev J, Lucarelli G. Allogeneic cellular gene therapy for hemoglobinopathies. Hematology/oncology clinics of North America. 2010;24(6):1145–63. doi:10.1016/j.hoc.2010.08.004.

  10. Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC et al. Bone marrow transplantation for sickle cell disease. The New England journal of medicine. 1996;335(6):369–76.

    Google Scholar 

  11. Bernaudin F, Socie G, Kuentz M, Chevret S, Duval M, Bertrand Y et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749–56. doi:10.1182/blood-2007-03-079665.

  12. Russell DW, Hirata RK. Human gene targeting by viral vectors. Nature genetics. 1998;18(4):325–30.

    Google Scholar 

  13. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature biotechnology. 2008;26(7):808–16. doi:nbt1410 [pii]10.1038/nbt1410.

    Google Scholar 

  14. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nature biotechnology. 2010;28(8):839–47. doi:10.1038/nbt.1663.

  15. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. The New England journal of medicine. 2014;370(10):901–10. doi:10.1056/NEJMoa1300662.

  16. Kakarougkas A, Jeggo PA. DNA DSB repair pathway choice: an orchestrated handover mechanism. The British journal of radiology. 2014;87(1035):20130685. doi:10.1259/bjr.20130685.

  17. Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300(5620):763.

    Google Scholar 

  18. Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour J, Rawlings DJ et al. Tracking genome engineering outcome at individual DNA breakpoints. Nature methods. 2011;8(8):671–6. doi:10.1038/nmeth.1648.

  19. Hendel A, Kildebeck EJ, Fine EJ, Clark JT, Punjya N, Sebastiano V et al. Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell reports. 2014;7(1):293–305. doi:10.1016/j.celrep.2014.02.040.

  20. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current gene therapy. 2011;11(1):11–27.

    Google Scholar 

  21. Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nature biotechnology. 2005;23(8):967–73.

    Google Scholar 

  22. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(3):1156–60.

    Google Scholar 

  23. Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. 2003;42(7):2137–48.

    Google Scholar 

  24. Porteus MH. Mammalian gene targeting with designed zinc finger nucleases. Molecular therapy: the journal of the American Society of Gene Therapy. 2006;13(2):438–46.

    Google Scholar 

  25. Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Molecular therapy: the journal of the American Society of Gene Therapy. 2008;16(4):707–17. doi:mt200820 [pii]10.1038/mt.2008.20.

    Google Scholar 

  26. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31(2):294–301. doi:S1097-2765(08)00461-9 [pii]10.1016/j.molcel.2008.06.016.

    Google Scholar 

  27. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–51.

    Google Scholar 

  28. Isalan M, Choo Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol. 2001;340:593–609.

    Google Scholar 

  29. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem cells. 2011;29(11):1717–26. doi:10.1002/stem.718.

  30. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118(17):4599–608. doi:10.1182/blood-2011-02-335554.

  31. Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333(6051):1843–6. doi:10.1126/science.1204094.

  32. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61. doi:10.1534/genetics.110.120717.

  33. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501. doi:10.1126/science.1178817.

  34. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12. doi:10.1126/science.1178811.

  35. Voit RA, Hendel A, Pruett-Miller SM, Porteus MH. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic acids research. 2014;42(2):1365-78. doi:10.1093/nar/gkt947.

  36. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. doi:10.1126/science.1225829.

  37. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi:10.1126/science.1258096.

  38. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic acids research. 2013;41(20):9584–92. doi:10.1093/nar/gkt714.

  39. Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P et al. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic acids research. 2014;42(4):2591–601. doi:10.1093/nar/gkt1224.

  40. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature biotechnology. 2014;32(6):569–76. doi:10.1038/nbt.2908.

  41. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature biotechnology. 2014;32(6):577–82. doi:10.1038/nbt.2909.

  42. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nature genetics. 2007;39(10):1197–9. doi:10.1038/ng2108.

  43. Sankaran VG, Orkin SH. Genome-wide association studies of hematologic phenotypes: a window into human hematopoiesis. Current opinion in genetics & development. 2013;23(3):339–44. doi:10.1016/j.gde.2013.02.006.

  44. Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science. 2011;334(6058):993–6. doi:10.1126/science.1211053.

  45. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–42. doi:10.1126/science.1165409.

  46. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature biotechnology. 2015;33(2):179–86. doi:10.1038/nbt.3101.

  47. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253–7. doi:10.1126/science.1242088.

  48. Lee HJ, Kim E, Kim JS. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome research. 2010;20(1):81–9. doi:10.1101/gr.099747.109.

  49. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27. doi:10.1182/blood-2011-03-325258.

  50. Papadakis MN, Patrinos GP, Tsaftaridis P, Loutradi-Anagnostou A. A comparative study of Greek nondeletional hereditary persistence of fetal hemoglobin and beta-thalassemia compound heterozygotes. Journal of molecular medicine. 2002;80(4):243–7. doi:10.1007/s00109-001-0312-4.

  51. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

  52. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–3. doi:1152092 [pii]10.1126/science.1152092.

    Google Scholar 

  53. Kean LS, Durham MM, Adams AB, Hsu LL, Perry JR, Dillehay D et al. A cure for murine sickle cell disease through stable mixed chimerism and tolerance induction after nonmyeloablative conditioning and major histocompatibility complex-mismatched bone marrow transplantation. Blood. 2002;99(5):1840–9.

    Google Scholar 

  54. Kean LS, Manci EA, Perry J, Balkan C, Coley S, Holtzclaw D et al. Chimerism and cure: hematologic and pathologic correction of murine sickle cell disease. Blood. 2003;102(13):4582–93. doi:10.1182/blood-2003-03-0712.

  55. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014;510(7504):235–40. doi:10.1038/nature13420.

  56. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22. doi:10.1038/nature09328.

  57. Chang CJ, Bouhassira EE. Zinc-finger nuclease-mediated correction of alpha-thalassemia in iPS cells. Blood. 2012;120(19):3906–14. doi:10.1182/blood-2012-03-420703.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew H. Porteus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porteus, M.H. (2017). Genome Editing for the β-Hemoglobinopathies. In: Malik, P., Tisdale, J. (eds) Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology(), vol 1013. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7299-9_8

Download citation

Publish with us

Policies and ethics