Skip to main content

Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia

  • Chapter
  • First Online:
Gene and Cell Therapies for Beta-Globinopathies

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 1013))

Abstract

Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. Current treatment involves transfusion and iron chelation; allogeneic bone marrow transplant is the only curative option, but is limited by the availability of matching donors and graft-versus-host disease. As these two diseases are monogenic diseases, they make an attractive setting for gene therapy. Gene therapy aims to correct the mutated beta-globin gene or add back a functional copy of beta- or gamma-globin. Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rees DC, Williams TN, Gladwin MT: Sickle-cell disease. Lancet, 376:2018-2031.

    Google Scholar 

  2. Cappellini MD, Bejaoui M, Agaoglu L, Canatan D, Capra M, Cohen A, Drelichman G, Economou M, Fattoum S, Kattamis A, et al: Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years' follow-up. Blood 2011, 118:884-893.

    Article  CAS  PubMed  Google Scholar 

  3. Gardenghi S, Grady RW, Rivella S: Anemia, Ineffective Erythropoiesis, and Hepcidin: Interacting Factors in Abnormal Iron Metabolism Leading to Iron Overload in beta-Thalassemia. Hematol Oncol Clin North Am 2010, 24:1089-1107.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Musallam KM, Cappellini MD, Wood JC, Taher AT: Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev 2012, 26 Suppl 1:S16-19.

    Article  CAS  PubMed  Google Scholar 

  5. Taher AT, Porter JB, Viprakasit V, Kattamis A, Chuncharunee S, Sutcharitchan P, Siritanaratkul N, Galanello R, Karakas Z, Lawniczek T, et al: Deferasirox effectively reduces iron overload in non-transfusion-dependent thalassemia (NTDT) patients: 1-year extension results from the THALASSA study. Ann Hematol 2013, 92:1485-1493.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Musallam KM, Rivella S, Vichinsky E, Rachmilewitz EA: Non-transfusion-dependent thalassemias. Haematologica 2013, 98:833-844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rivella S: The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev 2012, 26 Suppl 1:S12-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong A, Rivella S, Breda L: Gene therapy for hemoglobinopathies: progress and challenges. Transl Res 2013, 161:293-306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angelucci E: Hematopoietic stem cell transplantation in thalassemia. Hematology Am Soc Hematol Educ Program 2010, 2010:456-462.

    PubMed  Google Scholar 

  10. Taher AT, Temraz S, Cappellini MD: Deferasirox for the treatment of iron overload in non-transfusion-dependent thalassemia. Expert Rev Hematol 2013, 6:495-509.

    Article  CAS  PubMed  Google Scholar 

  11. Porter JB: Pathophysiology of transfusional iron overload: contrasting patterns in thalassemia major and sickle cell disease. Hemoglobin 2009, 33 Suppl 1:S37-45.

    Article  CAS  PubMed  Google Scholar 

  12. Vogiatzi MG, Tsay J, Verdelis K, Rivella S, Grady RW, Doty S, Giardina PJ, Boskey AL: Changes in Bone Microarchitecture and Biomechanical Properties in the th3 Thalassemia Mouse are Associated with Decreased Bone Turnover and Occur During the Period of Bone Accrual. Calcif Tissue Int 2010.

    Google Scholar 

  13. Haidar R, Musallam KM, Taher AT: Bone disease and skeletal complications in patients with beta thalassemia major. Bone 2011, 48:425-432.

    Article  PubMed  Google Scholar 

  14. Ginzburg Y, Rivella S: beta-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 2011, 118:4321-4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rivella S: Ineffective erythropoiesis and thalassemias. Curr Opin Hematol 2009, 16:187-194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo S, Casu C, Gardenghi S, Booten S, Aghajan M, Peralta R, Watt A, Freier S, Monia BP, Rivella S: Reducing TMPRSS6 ameliorates hemochromatosis and beta-thalassemia in mice. J Clin Invest 2013, 123:1531-1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parrow NL, Gardenghi S, Ramos P, Casu C, Grady RW, Anderson ER, Shah YM, Li H, Ginzburg YZ, Fleming RE, Rivella S: Decreased hepcidin expression in murine beta-thalassemia is associated with suppression of Bmp/Smad signaling. Blood 2012, 119:3187-3189.

    Article  CAS  PubMed  Google Scholar 

  18. Gardenghi S, Marongiu MF, Ramos P, Guy E, Breda L, Chadburn A, Liu Y, Amariglio N, Rechavi G, Rachmilewitz EA, et al: Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 2007, 109:5027-5035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. John M Coffin SHH, and Harold E Varmus: Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997.

    Google Scholar 

  20. Dzierzak EA, Papayannopoulou T, Mulligan RC: Lineage-specific expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature 1988, 331:35-41.

    Article  CAS  PubMed  Google Scholar 

  21. Karlsson S, Papayannopoulou T, Schweiger SG, Stamatoyannopoulos G, Nienhuis AW: Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc Natl Acad Sci U S A 1987, 84:2411-2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karlsson S, Papayannopoulou T, Stamatoyannopoulos G, Nienhuis AW: Regulated expression of human globin genes following transfer with retroviral vectors. Prog Clin Biol Res 1987, 251:595-603.

    CAS  PubMed  Google Scholar 

  23. Grosveld F, van Assendelft GB, Greaves DR, Kollias G: Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 1987, 51:975-985.

    Article  CAS  PubMed  Google Scholar 

  24. Li Q, Peterson KR, Fang X, Stamatoyannopoulos G: Locus control regions. Blood 2002, 100:3077-3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA: Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012, 149:1233-1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plavec I, Papayannopoulou T, Maury C, Meyer F: A human beta-globin gene fused to the human beta-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. Blood 1993, 81:1384-1392.

    CAS  PubMed  Google Scholar 

  27. Leboulch P, Huang GM, Humphries RK, Oh YH, Eaves CJ, Tuan DY, London IM: Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. Embo J 1994, 13:3065-3076.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sadelain M, Wang CH, Antoniou M, Grosveld F, Mulligan RC: Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci U S A 1995, 92:6728-6732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G: A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci U S A 2000, 97:9150-9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sabatino DE, Seidel NE, Cline AP, Anderson SM, Gallagher PG, Bodine DM: Development of a stable retrovirus vector capable of long-term expression of gamma-globin mRNA in mouse erythrocytes. Ann N Y Acad Sci 2001, 938:246-261.

    Article  CAS  PubMed  Google Scholar 

  31. Fragkos M, Anagnou NP, Tubb J, Emery DW: Use of the hereditary persistence of fetal hemoglobin 2 enhancer to increase the expression of oncoretrovirus vectors for human gamma-globin. Gene Ther 2005, 12:1591-1600.

    Article  CAS  PubMed  Google Scholar 

  32. Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW: The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 2003, 101:2175-2183.

    Article  CAS  PubMed  Google Scholar 

  33. Oh IH, Fabry ME, Humphries RK, Pawliuk R, Leboulch P, Hoffman R, Nagel RL, Eaves C: Expression of an anti-sickling beta-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Exp Hematol 2004, 32:461-469.

    Article  CAS  PubMed  Google Scholar 

  34. Arumugam P, Malik P: Genetic therapy for beta-thalassemia: from the bench to the bedside. Hematology Am Soc Hematol Educ Program 2010, 2010:445-450.

    PubMed  Google Scholar 

  35. Breda L, Gambari R, Rivella S: Gene therapy in thalassemia and hemoglobinopathies Mediterranean Journal of Hematology and Infectious Diseases 2009, Vol 1, No 1.

    Google Scholar 

  36. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [see comments]. Science 1996, 272:263-267.

    Article  CAS  PubMed  Google Scholar 

  37. Millington M, Arndt A, Boyd M, Applegate T, Shen S: Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells. PLoS One 2009, 4:e6461.

    Article  PubMed  PubMed Central  Google Scholar 

  38. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M: Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000, 406:82-86.

    Article  CAS  PubMed  Google Scholar 

  39. Rivella S, May C, Chadburn A, Riviere I, Sadelain M: A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 2003, 101:2932-2939.

    Article  CAS  PubMed  Google Scholar 

  40. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, et al: Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001, 294:2368-2371.

    Article  CAS  PubMed  Google Scholar 

  41. Trudel M, Saadane N, Garel MC, Bardakdjian-Michau J, Blouquit Y, Guerquin-Kern JL, Rouyer-Fessard P, Vidaud D, Pachnis A, Romeo PH, et al.: Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. Embo J 1991, 10:3157-3165.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Paszty C, Brion CM, Manci E, Witkowska HE, Stevens ME, Mohandas N, Rubin EM: Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science 1997, 278:876-878.

    Article  CAS  PubMed  Google Scholar 

  43. Romero Z, Urbinati F, Geiger S, Cooper AR, Wherley J, Kaufman ML, Hollis RP, de Assin RR, Senadheera S, Sahagian A, et al: beta-globin gene transfer to human bone marrow for sickle cell disease. J Clin Invest 2013.

    Google Scholar 

  44. Puthenveetil G, Scholes J, Carbonell D, Qureshi N, Xia P, Zeng L, Li S, Yu Y, Hiti AL, Yee JK, Malik P: Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 2004, 104:3445-3453.

    Article  CAS  PubMed  Google Scholar 

  45. Rivella S, Callegari JA, May C, Tan CW, Sadelain M: The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 2000, 74:4679-4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emery DW: The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 2011, 22:761-774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rivella S, Sadelain M: Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Semin Hematol 1998, 35:112-125.

    CAS  PubMed  Google Scholar 

  48. Nienhuis AW, Persons DA: Development of gene therapy for thalassemia. Cold Spring Harb Perspect Med 2012, 2.

    Google Scholar 

  49. Arumugam PI, Scholes J, Perelman N, Xia P, Yee JK, Malik P: Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther 2007, 15:1863-1871.

    Article  CAS  PubMed  Google Scholar 

  50. Arumugam PI, Urbinati F, Velu CS, Higashimoto T, Grimes HL, Malik P: The 3' region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 2009, 4:e6995.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lisowski L, Sadelain M: Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in beta-thalassemic mice. Blood 2007, 110:4175-4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miccio A, Cesari R, Lotti F, Rossi C, Sanvito F, Ponzoni M, Routledge SJ, Chow CM, Antoniou MN, Ferrari G: In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc Natl Acad Sci U S A 2008, 105:10547-10552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roselli EA, Mezzadra R, Frittoli MC, Maruggi G, Biral E, Mavilio F, Mastropietro F, Amato A, Tonon G, Refaldi C, et al: Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients. EMBO Mol Med 2010, 2:315-328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miccio A, Poletti V, Tiboni F, Rossi C, Antonelli A, Mavilio F, Ferrari G: The GATA1-HS2 enhancer allows persistent and position-independent expression of a beta-globin transgene. PLoS One 2011, 6:e27955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hanawa H, Hargrove PW, Kepes S, Srivastava DK, Nienhuis AW, Persons DA: Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood 2004, 104:2281-2290.

    Article  CAS  PubMed  Google Scholar 

  56. Samakoglu S, Lisowski L, Budak-Alpdogan T, Usachenko Y, Acuto S, Di Marzo R, Maggio A, Zhu P, Tisdale JF, Riviere I, Sadelain M: A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat Biotechnol 2006, 24:89-94.

    Article  CAS  PubMed  Google Scholar 

  57. Pestina TI, Hargrove PW, Jay D, Gray JT, Boyd KM, Persons DA: Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin. Mol Ther 2009, 17:245-252.

    Article  CAS  PubMed  Google Scholar 

  58. Wilber A, Hargrove PW, Kim YS, Riberdy JM, Sankaran VG, Papanikolaou E, Georgomanoli M, Anagnou NP, Orkin SH, Nienhuis AW, Persons DA: Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood 2011, 117:2817-2826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Papanikolaou E, Georgomanoli M, Stamateris E, Panetsos F, Karagiorga M, Tsaftaridis P, Graphakos S, Anagnou NP: The new self-inactivating lentiviral vector for thalassemia gene therapy combining two HPFH activating elements corrects human thalassemic hematopoietic stem cells. Hum Gene Ther 2012, 23:15-31.

    Article  CAS  PubMed  Google Scholar 

  60. Gallagher PG, Steiner LA, Liem RI, Owen AN, Cline AP, Seidel NE, Garrett LJ, Bodine DM: Mutation of a barrier insulator in the human ankyrin-1 gene is associated with hereditary spherocytosis. J Clin Invest 2010, 120:4453-4465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yocum AO, Steiner LA, Seidel NE, Cline AP, Rout ED, Lin JY, Wong C, Garrett LJ, Gallagher PG, Bodine DM: A tissue-specific chromatin loop activates the erythroid ankyrin-1 promoter. Blood 2012, 120:3586-3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW, Orkin SH: Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 2011, 334:993-996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, et al: An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013, 342:253-257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu XS, Hong X, Wang G: Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol 2009, 2:15.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wilber A, Tschulena U, Hargrove PW, Kim YS, Persons DA, Barbas CF, 3rd, Nienhuis AW: A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 2010, 115:3033-3041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Graslund T, Li X, Magnenat L, Popkov M, Barbas CF, 3rd: Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of gamma-globin expression and the treatment of sickle cell disease. J Biol Chem 2005, 280:3707-3714.

    Article  PubMed  Google Scholar 

  67. Suwanmanee T, Sierakowska H, Lacerra G, Svasti S, Kirby S, Walsh CE, Fucharoen S, Kole R: Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol 2002, 62:545-553.

    Article  CAS  PubMed  Google Scholar 

  68. Lacerra G, Sierakowska H, Carestia C, Fucharoen S, Summerton J, Weller D, Kole R: Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci U S A 2000, 97:9591-9596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, et al: Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010, 467:318-322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ikeda K, Mason PJ, Bessler M: 3'UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood 2011, 117:5860-5869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Young AR, Narita M: Oncogenic HMGA2: short or small? Genes Dev 2007, 21:1005-1009.

    Article  CAS  PubMed  Google Scholar 

  72. Sadelain M, Riviere I, Wang X, Boulad F, Prockop S, Giardina P, Maggio A, Galanello R, Locatelli F, Yannaki E: Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in beta-thalassemia. Ann N Y Acad Sci 2010, 1202:52-58.

    Article  CAS  PubMed  Google Scholar 

  73. Li CK, Luk CW, Ling SC, Chik KW, Yuen HL, Li CK, Shing MM, Chang KO, Yuen PM: Morbidity and mortality patterns of thalassaemia major patients in Hong Kong: retrospective study. Hong Kong Med J 2002, 8:255-260.

    CAS  PubMed  Google Scholar 

  74. Yannaki E, Papayannopoulou T, Jonlin E, Zervou F, Karponi G, Xagorari A, Becker P, Psatha N, Batsis I, Kaloyannidis P, et al: Hematopoietic stem cell mobilization for gene therapy of adult patients with severe beta-thalassemia: results of clinical trials using G-CSF or plerixafor in splenectomized and nonsplenectomized subjects. Mol Ther 2012, 20:230-238.

    Article  CAS  PubMed  Google Scholar 

  75. Lucarelli G, Galimberti M, Polchi P, Angelucci E, Baronciani D, Giardini C, Politi P, Durazzi SM, Muretto P, Albertini F: Bone marrow transplantation in patients with thalassemia. N Engl J Med 1990, 322:417-421.

    Article  CAS  PubMed  Google Scholar 

  76. Lucarelli G, Andreani M, Angelucci E: The cure of thalassemia by bone marrow transplantation. Blood Rev 2002, 16:81-85.

    Article  CAS  PubMed  Google Scholar 

  77. Bertaina A, Bernardo ME, Mastronuzzi A, La Nasa G, Locatelli F: The role of reduced intensity preparative regimens in patients with thalassemia given hematopoietic transplantation. Ann N Y Acad Sci, 1202:141-148.

    Google Scholar 

  78. Bernardo ME, Piras E, Vacca A, Giorgiani G, Zecca M, Bertaina A, Pagliara D, Contoli B, Pinto RM, Caocci G, et al: Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood 2012, 120:473-476.

    Article  CAS  PubMed  Google Scholar 

  79. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, Bohm M, Nowrouzi A, Ball CR, Glimm H, et al: Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010, 363:1918-1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kuhlcke K, Schilz A, Kunkel H, et al: Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006, 12:401-409.

    Article  CAS  PubMed  Google Scholar 

  81. Abonour R, Williams DA, Einhorn L, Hall KM, Chen J, Coffman J, Traycoff CM, Bank A, Kato I, Ward M, et al: Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 2000, 6:652-658.

    Article  CAS  PubMed  Google Scholar 

  82. Moscow JA, Huang H, Carter C, Hines K, Zujewski J, Cusack G, Chow C, Venzon D, Sorrentino B, Chiang Y, et al: Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 1999, 94:52-61.

    CAS  PubMed  Google Scholar 

  83. Persons DA, Allay ER, Sawai N, Hargrove PW, Brent TP, Hanawa H, Nienhuis AW, Sorrentino BP: Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 2003, 102:506-513.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao H, Pestina TI, Nasimuzzaman M, Mehta P, Hargrove PW, Persons DA: Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood 2009, 113:5747-5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beard BC, Sud R, Keyser KA, Ironside C, Neff T, Gerull S, Trobridge GD, Kiem HP: Long-term polyclonal and multilineage engraftment of methylguanine methyltransferase P140K gene-modified dog hematopoietic cells in primary and secondary recipients. Blood 2009, 113:5094-5103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Larochelle A, Choi U, Shou Y, Naumann N, Loktionova NA, Clevenger JR, Krouse A, Metzger M, Donahue RE, Kang E, et al: In vivo selection of hematopoietic progenitor cells and temozolomide dose intensification in rhesus macaques through lentiviral transduction with a drug resistance gene. J Clin Invest 2009, 119:1952-1963.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Beard BC, Trobridge GD, Ironside C, McCune JS, Adair JE, Kiem HP: Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J Clin Invest 2010, 120:2345-2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maier P, Spier I, Laufs S, Veldwijk MR, Fruehauf S, Wenz F, Zeller WJ: Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther 2010, 17:389-399.

    Article  CAS  PubMed  Google Scholar 

  89. Maier P, Heckmann D, Spier I, Laufs S, Zucknick M, Allgayer H, Fruehauf S, Zeller WJ, Wenz F: F2A sequence linking MGMT(P140K) and MDR1 in a bicistronic lentiviral vector enables efficient chemoprotection of haematopoietic stem cells. Cancer Gene Ther 2012, 19:802-810.

    Article  CAS  PubMed  Google Scholar 

  90. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L: A third-generation lentivirus vector with a conditional packaging system. J Virol 1998, 72:8463-8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998, 72:9873-9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Papapetrou EP, Zoumbos NC, Athanassiadou A: Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 2005, 12 Suppl 1:S118-130.

    Article  CAS  PubMed  Google Scholar 

  93. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z: Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997, 91:501-510.

    Article  CAS  PubMed  Google Scholar 

  94. Sjeklocha LM, Park CW, Wong PY, Roney MJ, Belcher JD, Kaufman DS, Vercellotti GM, Hebbel RP, Steer CJ: Erythroid-specific expression of beta-globin from Sleeping Beauty-transduced human hematopoietic progenitor cells. PLoS One 2011, 6:e29110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang GP, Berry CC, Malani N, Leboulch P, Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M, Bushman FD: Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 2010, 115:4356-4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Papapetrou EP, Sadelain M: Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat Protoc 2011, 6:1251-1273.

    Article  CAS  PubMed  Google Scholar 

  97. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, et al: Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 2011, 29:73-78.

    Article  CAS  PubMed  Google Scholar 

  98. Sadelain M: Eliminating cells gone astray. N Engl J Med 2011, 365:1735-1737.

    Article  CAS  PubMed  Google Scholar 

  99. Marin V, Cribioli E, Philip B, Tettamanti S, Pizzitola I, Biondi A, Biagi E, Pule M: Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods 2012, 23:376-386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.

    Article  CAS  PubMed  Google Scholar 

  101. Yamanaka S: Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 2012, 10:678-684.

    Article  CAS  PubMed  Google Scholar 

  102. Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW: Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A 2009, 106:9826-9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zou J, Mali P, Huang X, Dowey SN, Cheng L: Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 2011, 118:4599-4608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF, et al: In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011, 29:1717-1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, Huang K, Chen S, Zhou X, Chen Y, et al: TALEN-mediated gene correction in integration-free beta-thalassemia iPSCs. J Biol Chem 2013.

    Google Scholar 

  106. Howden SE, Voullaire L, Wardan H, Williamson R, Vadolas J: Site-specific, Rep-mediated integration of the intact beta-globin locus in the human erythroleukaemic cell line K562. Gene Ther 2008, 15:1372-1383.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Children’s Cancer and Blood Foundation and NIH grant NHLBI-R01HL102449-03 (to S. Rivella)

Competing Interests

S. Rivella is a consultant for Novartis, Biomarin and Isis Pharmaceuticals. In addition, he is a co-inventor for the patents US8058061 B2 C12N 20111115 and US7541179 B2C12N 20090602. The consulting work and intellectual property of S. Rivella did not affect in any way the design, conduct, or reporting of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Rivella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, A.C., Rivella, S. (2017). Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia. In: Malik, P., Tisdale, J. (eds) Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology(), vol 1013. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7299-9_6

Download citation

Publish with us

Policies and ethics