Skip to main content

Human Brain Imaging in HIV and NeuroAIDS

  • Chapter
  • First Online:
Global Virology II - HIV and NeuroAIDS

Abstract

The introduction of combination antiretroviral therapy (cART) has significantly decreased the severity of HIV-associated neurocognitive disorder (HAND) and increased the life expectancy of the human immunodeficiency virus (HIV) positive population. Nevertheless, patients still show persistent neurocognitive disorders due to associated structural and functional brain changes. The purpose of this chapter is to highlight the significance of brain neuroimaging techniques and biomarkers in understanding the pathophysiology related to HIV infection and HAND. These imaging modalities include volumetric (MRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), single-photon emission computed tomography (SPECT), diffusion tensor imaging (DTI), arterial spin labeling (ASL), and perfusion MRI. The authors predict that with neuroimaging advances at the molecular level, it will soon be the noninvasive gold standard in brain pathology diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poveda E, Martin-Gayo E (2017) Similar immunological profiles between nonprogressing HIV infection in children and nonpathogenic SIV infection. AIDS Rev 19(1):54–55

    PubMed  Google Scholar 

  2. Liu Y et al (2000) Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neurovirol 1(6 Suppl):S70–S81

    Google Scholar 

  3. Aquaro S et al (2005) Human immunodeficiency virus infection and acquired immunodeficiency syndrome dementia complex: role of cells of monocyte-macrophage lineage. J Neurovirol 11(Suppl 3):58–66

    Article  CAS  PubMed  Google Scholar 

  4. Price RW, Brew B (1988) Infection of the central nervous system by human immunodeficiency virus. Role of the immune system in pathogenesis. Ann N Y Acad Sci 540:162–175

    Article  CAS  PubMed  Google Scholar 

  5. Price RW, Brew BJ, Rosenblum M (1990) The AIDS dementia complex and HIV-1 brain infection: a pathogenetic model of virus-immune interaction. Res Publ Assoc Res Nerv Ment Dis 68:269–290

    CAS  PubMed  Google Scholar 

  6. Price RW, Sidtis J, Rosenblum M (1988) The AIDS dementia complex: some current questions. Ann Neurol 23(Suppl):S27–S33

    Article  PubMed  Google Scholar 

  7. Antinori A et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vera JH et al (2017) PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy. Eur J Nucl Med Mol Imaging 44(5):895–902

    Article  PubMed  Google Scholar 

  9. Harezlak J et al (2014) Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART. J Neurovirol 20(3):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baker LM et al (2017) Topological organization of whole-brain white matter in HIV infection. Brain Connect 7(2):115–122

    Article  PubMed  Google Scholar 

  11. Avison MJ et al (2004) Inflammatory changes and breakdown of microvascular integrity in early human immunodeficiency virus dementia. J Neurovirol 10(4):223–232

    Article  CAS  PubMed  Google Scholar 

  12. Avison MJ et al (2004) Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol 157(1–2):140–146

    Article  CAS  PubMed  Google Scholar 

  13. Aylward EH et al (1995) Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 152(7):987–994

    Article  CAS  PubMed  Google Scholar 

  14. Shyam babu C et al (2013) Usefulness of stereotactic biopsy and neuroimaging in management of HIV-1 Clade C associated focal brain lesions with special focus on cerebral toxoplasmosis. Clin Neurol Neurosurg 115(7):995–1002

    Article  CAS  PubMed  Google Scholar 

  15. Chang L (1995) In vivo magnetic resonance spectroscopy in HIV and HIV-related brain diseases. Rev Neurosci 6(4):365–378

    Article  CAS  PubMed  Google Scholar 

  16. Cohen RA et al (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Becker JT et al (2012) Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology 54(2):113–121

    Article  PubMed  Google Scholar 

  18. Becker JT et al (2011) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav 5(2):77–85

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma J et al (2015) A fast atlas pre-selection procedure for multi-atlas based brain segmentation. Conf Proc IEEE Eng Med Biol Soc 2015:3053–3056

    PubMed  Google Scholar 

  20. Tang X et al (2015) Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles. Front Neurosci 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu D et al (2016) Direct estimation of patient attributes from anatomical MRI based on multi-atlas voting. Neuroimage Clin 12:570–581

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu D et al (2016) Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI. NeuroImage 125:120–130

    Article  PubMed  Google Scholar 

  23. Alessandro L et al (2017) Retrospective study of 48 cases of primary central nervous system lymphoma. Medicina (B Aires) 77(1):17–23

    Google Scholar 

  24. Fujiki N, Tashiro K (1997) Herpes viruses--herpes simplex virus, varicella-zoster virus, EB virus, cytomegalovirus. Nihon Rinsho 55(4):855–860

    CAS  PubMed  Google Scholar 

  25. Godi C et al (2017) High b-value diffusion-weighted imaging in progressive multifocal leukoencephalopathy in HIV patients. Eur Radiol. PMID: 2816837; doi: 10.1007/s00330-017-4761-8 [Epub ahead of print]

  26. Arendt G (1995) Imaging methods as a diagnostic tool in neuro-AIDS. A review Bildgebung 62(4):310–319

    CAS  PubMed  Google Scholar 

  27. Smirniotopoulos JG et al (1997) Neuroimaging--autopsy correlations in AIDS. Neuroimaging Clin N Am 7(3):615–637

    CAS  PubMed  Google Scholar 

  28. Mitchell WG (1999) Neurocysticercosis and acquired cerebral toxoplasmosis in children. Semin Pediatr Neurol 6(4):267–277

    Article  CAS  PubMed  Google Scholar 

  29. Chang L et al (1999) Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 52(1):100–108

    Article  CAS  PubMed  Google Scholar 

  30. Chang L et al (2003) Persistent brain abnormalities in antiretroviral-naive HIV patients 3 months after HAART. Antivir Ther 8(1):17–26

    CAS  PubMed  Google Scholar 

  31. Mohamed MA et al (2010) Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study. Magn Reson Imaging 28(9):1251–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohamed MA et al (2010) Factor analysis of proton MR spectroscopic imaging data in HIV infection: metabolite-derived factors help identify infection and dementia. Radiology 254(2):577–586

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sailasuta N, Shriner K, Ross B (2009) Evidence of reduced glutamate in the frontal lobe of HIV-seropositive patients. NMR Biomed 22(3):326–331

    Article  CAS  PubMed  Google Scholar 

  34. Sailasuta N et al (2012) Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. PLoS One 7(11):e49272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bairwa D et al (2016) Case control study: magnetic resonance spectroscopy of brain in HIV infected patients. BMC Neurol 16:99

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barker PB (2001) N-acetyl aspartate--a neuronal marker? Ann Neurol 49(4):423–424.

    Google Scholar 

  37. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265(2):54–84

    Article  CAS  PubMed  Google Scholar 

  38. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153

    Article  CAS  PubMed  Google Scholar 

  39. Sailasuta N et al (2016) Neuronal-glia markers by magnetic resonance spectroscopy in HIV before and after combination antiretroviral therapy. J Acquir Immune Defic Syndr 71(1):24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopez-Villegas D, Lenkinski RE, Frank I (1997) Biochemical changes in the frontal lobe of HIV-infected individuals detected by magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 94(18):9854–9859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wallace DR et al (2006) Delta opioid agonists attenuate TAT(1-72)-induced oxidative stress in SK-N-SH cells. Neurotoxicology 27(1):101–107

    Article  CAS  PubMed  Google Scholar 

  42. Pannu R, Singh I (2006) Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 49(2):170–182

    Article  CAS  PubMed  Google Scholar 

  43. Zhao ML et al (2001) Expression of inducible nitric oxide synthase, interleukin-1 and caspase-1 in HIV-1 encephalitis. J Neuroimmunol 115(1–2):182–191

    Article  CAS  PubMed  Google Scholar 

  44. Rostasy K et al (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 46(2):207–216

    Article  CAS  PubMed  Google Scholar 

  45. Kaul M, Lipton SA (2005) Experimental and potential future therapeutic approaches for HIV-1 associated dementia targeting receptors for chemokines, glutamate and erythropoietin. Neurotox Res 8(1–2):167–186

    Article  CAS  PubMed  Google Scholar 

  46. Nichol KA, Schulz MW, Bennett MR (1995) Nitric oxide-mediated death of cultured neonatal retinal ganglion cells: neuroprotective properties of glutamate and chondroitin sulfate proteoglycan. Brain Res 697(1–2):1–16

    Article  CAS  PubMed  Google Scholar 

  47. Unterwald EM, Cuntapay M (2000) Dopamine-opioid interactions in the rat striatum: a modulatory role for dopamine D1 receptors in delta opioid receptor-mediated signal transduction. Neuropharmacology 39(3):372–381

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z et al (2003) Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology 312(1):60–73

    Article  CAS  PubMed  Google Scholar 

  49. Bhaskar A et al (2015) Measuring glutathione redox potential of HIV-1-infected macrophages. J Biol Chem 290(2):1020–1038

    Article  CAS  PubMed  Google Scholar 

  50. Turchan J et al (2003) Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 60(2):307–314

    Article  CAS  PubMed  Google Scholar 

  51. Cysique LA et al (2013) HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One 8(4):e61738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edden RA, Pomper MG, Barker PB (2007) In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla. Magn Reson Med 57(6):977–982

    Article  CAS  PubMed  Google Scholar 

  53. Grewal M et al (2016) GABA quantitation using MEGA-PRESS: regional and hemispheric differences. J Magn Reson Imaging 44(6):1619–1623

    Article  PubMed  Google Scholar 

  54. Harris AD, Saleh MG, Edden RA (2017) Edited 1 H magnetic resonance spectroscopy in vivo: methods and metabolites. Magn Reson Med 77(4):1377–1389

    Article  CAS  PubMed  Google Scholar 

  55. Landim RC et al (2016) Investigation of NAA and NAAG dynamics underlying visual stimulation using MEGA-PRESS in a functional MRS experiment. Magn Reson Imaging 34(3):239–245

    Article  CAS  PubMed  Google Scholar 

  56. Porges EC et al (2017) Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults. Biol Psychiatry Cogn Neurosci Neuroimaging 2(1):38–44

    Article  PubMed  PubMed Central  Google Scholar 

  57. Saleh MG et al (2016) Simultaneous edited MRS of GABA and glutathione. NeuroImage 142:576–582

    Article  CAS  PubMed  Google Scholar 

  58. Chan KL et al (2017) Spatial Hadamard encoding of J-edited spectroscopy using slice-selective editing pulses. In: NMR Biomed

    Google Scholar 

  59. Chan KL et al (2016) HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy. Magn Reson Med 76(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark US et al (2010) Facial emotion recognition impairments in individuals with HIV. J Int Neuropsychol Soc 16(6):1127–1137

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clark US et al (2015) Facial emotion recognition impairments are associated with brain volume abnormalities in individuals with HIV. Neuropsychologia 70:263–271

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ipser JC et al (2015) HIV infection is associated with attenuated frontostriatal intrinsic connectivity: a preliminary study. J Int Neuropsychol Soc 21(3):203–213

    Article  PubMed  PubMed Central  Google Scholar 

  63. Melrose RJ et al (2008) Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing. Behav Brain Res 188(2):337–347

    Article  PubMed  Google Scholar 

  64. Alger JR (2012) The diffusion tensor imaging toolbox. J Neurosci 32(22):7418–7428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang L et al (2008) Greater than age-related changes in brain diffusion of HIV patients after 1 year. J Neuroimmune Pharmacol 3(4):265–274

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cysique LA et al (2017) White matter measures are near normal in controlled HIV infection except in those with cognitive impairment and longer HIV duration. J Neurovirol. PMID: 28324319; doi 10.1007/s13365-017-0524-1 [Epub ahead of print]

  67. Ances BM et al (2009) Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology 73(9):702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schielke E et al (1990) Reduced cerebral blood flow in early stages of human immunodeficiency virus infection. Arch Neurol 47(12):1342–1345

    Article  CAS  PubMed  Google Scholar 

  69. Bilgic B et al (2016) Rapid multi-orientation quantitative susceptibility mapping. NeuroImage 125:1131–1141

    Article  PubMed  Google Scholar 

  70. Schweser F, Deistung A, Reichenbach JR (2016) Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM). Z Med Phys 26(1):6–34

    Article  PubMed  Google Scholar 

  71. Carra-Dalliere C et al (2016) Use of quantitative susceptibility mapping (QSM) in progressive multifocal leukoencephalopathy. J Neuroradiol 43(1):6–10

    Article  CAS  PubMed  Google Scholar 

  72. Chang L et al (2011) Impact of apolipoprotein E epsilon4 and HIV on cognition and brain atrophy: antagonistic pleiotropy and premature brain aging. NeuroImage 58(4):1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang L et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage 23(4):1336–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. Mohamed MD, PhD, MEHP, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Mohamed, M.A. (2017). Human Brain Imaging in HIV and NeuroAIDS. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_6

Download citation

Publish with us

Policies and ethics