Skip to main content

HIV and SIV Evolution

  • Chapter
  • First Online:
Book cover Global Virology II - HIV and NeuroAIDS

Abstract

HIV-1 and HIV-2 both cause AIDS in humans, and both originated in nonhuman primates in Africa before several cross-species transmission events introduced them into humans. Of more than seven such events, only one, creating the HIV-1 M group of viruses, resulted in the AIDS pandemic. Studying the evolution and epidemiology of the viruses has many uses beyond tracing their origins. Evolutionary analyses are critical for vaccine design, for identifying drug resistance mutations, for designing therapeutic drugs, and for many other purposes. This chapter provides a brief overview of the evolution of human and simian immunodeficiency viruses. Evolution is the result of a complex interplay between mutations, selection pressures in individual infected hosts, selection pressures across populations of hosts, and recombination between virus lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF et al (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature [Internet] 397(6718):436–441. [cited 2016 Jun 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9989410

  2. D’arc M, Ayouba A, Esteban A, Learn GH, Boué V, Liegeois F et al (2015) Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc Natl Acad Sci U S A [Internet] 112(11):E1343–E1352. [cited 2016 Mar 16]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4371950&tool=pmcentrez&rendertype=abstract

  3. Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ et al (2014) HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science [Internet] 346(6205):56–61. [cited 2016 Jun 24]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25278604

  4. Katzourakis A, Gifford RJ, Tristem M, Gilbert MTP, Pybus OG (2009) Macroevolution of complex retroviruses. Science [Internet] 325(5947):1512. [cited 2012 Dec 19]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19762636

  5. Hron T, Farkašová H, Padhi A, Pačes J, Elleder D (2016) Life History of the oldest lentivirus: characterization of ELVgv integrations in the dermopteran genome. Mol Biol Evol [Internet] 33(10):2659–2669. [cited 2016 Sep 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27507840

  6. Keckesova Z, LMJ Y, Towers GJ, Gifford RJ, Katzourakis A (2009) Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology 384:7–11

    Article  CAS  PubMed  Google Scholar 

  7. Puvvada MP, Patel SS (2013) Role of trim5α in the suppression of cross-species transmission and its defence against human immunodeficiency virus. Curr HIV Res [Internet] 11(8):601–609. [cited 2016 Jun 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24606328

  8. Etienne L, Bibollet-Ruche F, Sudmant PH, Wu LI, Hahn BH, Emerman M (2015) The role of the antiviral APOBEC3 gene family in protecting chimpanzees against lentiviruses from monkeys. PLoS Pathog [Internet] 11(9):e1005149. [cited 2016 Jun 24]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26394054

  9. Hogan CA, Iles J, Frost EH, Giroux G, Cassar O, Gessain A et al (2016) Epidemic history and iatrogenic transmission of blood-borne viruses in mid-20th century Kinshasa. J Infect Dis [Internet] 214(3):353–360. [cited 2016 Jun 24]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26768251

  10. Pépin J, Labbé A-C, Mamadou-Yaya F, Mbélesso P, Mbadingaï S, Deslandes S et al (2010) Iatrogenic transmission of human T cell lymphotropic virus type 1 and hepatitis C virus through parenteral treatment and chemoprophylaxis of sleeping sickness in colonial Equatorial Africa. Clin Infect Dis [Internet] 51(7):777–784. [cited 2016 Oct 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20735238

  11. Deuchert E, Brody S (2006) The role of health care in the spread of HIV/AIDS in Africa: evidence from Kenya. Int J STD AIDS [Internet] 17(11):749–752. [cited 2016 Nov 8]. Available from: http://std.sagepub.com/lookup/doi/10.1258/095646206778691167

  12. Ganusov VV, Goonetilleke N, Liu MKP, Ferrari G, Shaw GM, McMichael AJ et al (2011) Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol [Internet] 85(20):10518–10528. [cited 2016 Oct 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21835793

  13. Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T et al (2010) Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep sequencing. PLoS One [Internet] 5(8):e12303. [cited 2016 Oct 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20808830

  14. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics [Internet] 26(19):2455–2457. [cited 2016 Nov 8]. Available from: http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btq429

  15. Leenen FAD, Muller CP, Turner JD, Garcia-Carpizo V, Ruiz-Llorente L, Fraga M et al (2016) DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics [Internet] 8(1):92. [cited 2016 Sep 22]. Available from: http://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-016-0256-8

  16. Leitner T, Escanilla D, Franzén C, Uhlén M, Albert J (1996) Accurate reconstruction of a known HIV-1 transmission history by phylogenetic tree analysis. Proc Natl Acad Sci U S A [Internet] 93(20):10864–10869. [cited 2016 Nov 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8855273

  17. Mooers, Holmes (2000) The evolution of base composition and phylogenetic inference. Trends Ecol Evol [Internet] 15(9):365–369. [cited 2016 Nov 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10931668

  18. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B et al (2013) Great ape genetic diversity and population history. Nature [Internet] 499(7459):471–475. [cited 2014 Mar 20]. Available from: http://dx.doi.org/10.1038/nature12228

  19. Krishnan NM (2004) Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference. Mol Biol Evol [Internet] 21(10):1871–1883. [cited 2016 Nov 8]. Available from: http://mbe.oupjournals.org/cgi/doi/10.1093/molbev/msh198

  20. Malim MH (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci [Internet] 364(1517):675–688

    Article  CAS  Google Scholar 

  21. Sharp PM, Bailes E, Stevenson M, Emerman M, Hahn BH (1996) Gene acquisition in HIV and SIV. Nature [Internet] 383(6601):586–587. [cited 2016 Oct 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8857532

  22. Tristem M, Marshall C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J [Internet] 11(9):3405–3412. [cited 2016 Oct 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1324171

  23. Losos JB, Arnold SJ, Bejerano G, Iii EDB, Hibbett D, Moritz C et al (2013) Evolutionary biology for the 21st century. PLoS Biol [Internet] 11(1):e1001466. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3539946&tool=pmcentrez&rendertype=abstract

  24. Dacheux L, Moreau A, Ataman-Onal Y, Biron F, Verrier B, Barin F (2004) Evolutionary dynamics of the Glycan shield of the human immunodeficiency virus envelope during natural infection and implications for exposure of the 2G12 epitope. J Virol [Internet] 78(22):12625–12637. [cited 2016 Nov 8]. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.78.22.12625-12637.2004

  25. Thormar H (2013) The origin of lentivirus research: maedi-visna virus. Curr HIV Res [Internet] 11(1):2–9. [cited 2016 Nov 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23278353

  26. Stowring L, Haase AT, Charman HP (1979) Serological definition of the lentivirus group of retroviruses. J Virol [Internet] 29(2):523–528. [cited 2016 Nov 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/85722

  27. White TA, Bartesaghi A, Borgnia MJ, de la Cruz MJV, Nandwani R, Hoxie JA et al (2011) Three-dimensional structures of soluble CD4-bound states of trimeric simian immunodeficiency virus envelope glycoproteins determined by using cryo-electron tomography. J Virol [Internet] 85(23):12114–12123. [cited 2016 Nov 9]. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.05297-11

  28. Honarmand Ebrahimi K, West GM, Flefil R (2014) Mass spectrometry approach and ELISA reveal the effect of codon optimization on N-linked glycosylation of HIV-1 gp120. J Proteome Res [Internet] 13(12):5801–5811. [cited 2016 Nov 9]. Available from: http://pubs.acs.org/doi/10.1021/pr500740n

  29. Gao F, Li Y, Decker JM, Peyerl FW, Bibollet-Ruche F, Rodenburg CM et al (2003) Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice. AIDS Res Hum Retroviruses [Internet] 19(9):817–823. [cited 2016 Nov 10]. Available from: http://www.liebertonline.com/doi/abs/10.1089/088922203769232610

  30. Pollom E, Dang KK, Potter EL, Gorelick RJ, Burch CL, Weeks KM et al (2013) Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog [Internet] 9(4):e1003294. [cited 2016 Nov 10]. Available from: http://dx.plos.org/10.1371/journal.ppat.1003294

    Article  CAS  Google Scholar 

  31. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R et al (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature [Internet] 460(7256):711–716. [cited 2016 Nov 10]. Available from: http://www.nature.com/doifinder/10.1038/nature08237

    Article  CAS  Google Scholar 

  32. Onafuwa-Nuga A, Telesnitsky A (2009) The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev [Internet] 73(3):451–480. [cited 2016 Oct 18]. Table of Contents. Available from: http://mmbr.asm.org/cgi/content/long/73/3/451

    Article  CAS  Google Scholar 

  33. Philpott S, Burger H, Tsoukas C, Foley B, Anastos K, Kitchen C et al (2005) Human immunodeficiency virus type 1 genomic RNA sequences in the female genital tract and blood: compartmentalization and intrapatient recombination. J Virol [Internet] 79(1):353–363. [cited 2016 Oct 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15596829

    Article  CAS  Google Scholar 

  34. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG et al (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci [Internet] 105(21):7552–7557. [cited 2016 Nov 8]. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0802203105

    Article  CAS  Google Scholar 

  35. Kiwelu IE, Novitsky V, Margolin L, Baca J, Manongi R, Sam N et al (2013) Frequent intra-subtype recombination among HIV-1 circulating in Tanzania. PLoS One [Internet] 8(8):e71131. [cited 2016 Nov 8]. Available from: http://dx.plos.org/10.1371/journal.pone.0071131

    Article  CAS  Google Scholar 

  36. Rousseau CM, Learn GH, Bhattacharya T, Nickle DC, Heckerman D, Chetty S et al (2007) Extensive intrasubtype recombination in South African human immunodeficiency virus type 1 subtype C infections. J Virol [Internet] 81(9):4492–4500. [cited 2016 Nov 8]. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.02050-06

    Article  CAS  Google Scholar 

  37. Cromer D, Grimm AJ, Schlub TE, Mak J, Davenport MP (2016) Estimating the in-vivo HIV template switching and recombination rate. AIDS [Internet] 30(2):185–192. [cited 2016 Nov 8]. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00002030-201601140-00004

    Article  CAS  Google Scholar 

  38. Golden M, Muhire BM, Semegni Y, Martin DP (2014) Patterns of recombination in HIV-1M are influenced by selection disfavouring the survival of recombinants with disrupted genomic RNA and protein structures. PLoS One [Internet] 9(6):e100400. [cited 2016 Nov 15]. Available from: http://dx.plos.org/10.1371/journal.pone.0100400

    Article  Google Scholar 

  39. Chin MPS, Rhodes TD, Chen J, Fu W, Hu W-S (2005) Identification of a major restriction in HIV-1 intersubtype recombination. Proc Natl Acad Sci [Internet] 102(25):9002–9007. [cited 2016 Nov 8]. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0502522102

    Article  CAS  Google Scholar 

  40. Salemi M, Vandamme A-M, Lemey P (2009) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, Cambridge, p 723

    Google Scholar 

  41. Lemey P, Derdelinckx I, Rambaut A, Van Laethem K, Dumont S, Vermeulen S et al (2005) Molecular footprint of drug-selective pressure in a human immunodeficiency virus transmission chain. J Virol [Internet] 79(18):11981–11989. [cited 2016 Nov 10]. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.79.18.11981-11989.2005

    Article  CAS  Google Scholar 

  42. Paraskevis D, Magiorkinis E, Magiorkinis G, Kiosses VG, Lemey P, Vandamme A-M et al (2004) Phylogenetic reconstruction of a known HIV-1 CRF04_cpx transmission network using maximum likelihood and Bayesian methods. J Mol Evol [Internet] 59(5):709–717. [cited 2016 Nov 10]. Available from: http://link.springer.com/10.1007/s00239-004-2651-6

    Article  CAS  Google Scholar 

  43. Chaillon A, Gianella S, Wertheim JO, Richman DD, Mehta SR, Smith DM (2014) HIV migration between blood and cerebrospinal fluid or semen over time. J Infect Dis [Internet] 209(10):1642–1652. [cited 2016 Nov 10]. Available from: http://jid.oxfordjournals.org/lookup/doi/10.1093/infdis/jit678

    Article  Google Scholar 

  44. Smith DM, Zárate S, Shao H, Pillai SK, Letendre SL, Wong JK et al (2009) Pleocytosis is associated with disruption of HIV compartmentalization between blood and cerebral spinal fluid viral populations. Virology [Internet] 385(1):204–208. [cited 2016 Nov 10]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0042682208007514

    Article  CAS  Google Scholar 

  45. Kemal KS, Ramirez CM, Burger H, Foley B, Mayers D, Klimkait T et al (2012) Recombination between variants from genital tract and plasma: evolution of multidrug-resistant HIV type 1. AIDS Res Hum Retroviruses [Internet] 28(12):1766–1774. [cited 2016 Nov 10]. Available from: http://online.liebertpub.com/doi/abs/10.1089/aid.2011.0383

    Article  CAS  Google Scholar 

  46. Kemal KS, Foley B, Burger H, Anastos K, Minkoff H, Kitchen C et al (2003) HIV-1 in genital tract and plasma of women: compartmentalization of viral sequences, coreceptor usage, and glycosylation. Proc Natl Acad Sci [Internet] 100(22):12972–12977. [cited 2016 Nov 10]. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.2134064100

    Article  CAS  PubMed Central  Google Scholar 

  47. Kuiken C, Korber B, Shafer RW (2016) HIV sequence databases. AIDS Rev [Internet] 5(1):52–61. [cited 2016 Nov 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12875108

    Google Scholar 

  48. NCBI Resource Coordinators NR (2013) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res [Internet] 41(Database issue):D8–20. [Internet]. Oxford University Press; [cited 2016 Nov 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23193264

    Article  Google Scholar 

  49. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol [Internet] 16(2):111–120. [cited 2016 Nov 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7463489

    Article  CAS  Google Scholar 

  50. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods [Internet] 9(8):772–772. [cited 2016 Nov 10]. Available from: http://www.nature.com/doifinder/10.1038/nmeth.2109

    Article  CAS  Google Scholar 

  51. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol [Internet] 29(6):1695–1701. [cited 2016 Nov 10]. Available from: http://mbe.oxfordjournals.org/cgi/doi/10.1093/molbev/mss020

    Article  CAS  Google Scholar 

  52. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol [Internet] 1(1):vev003. [cited 2016 Nov 15]. Available from: http://ve.oxfordjournals.org/cgi/doi/10.1093/ve/vev003

    Google Scholar 

  53. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol [Internet] 147(1):195–197. [cited 2016 Nov 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7265238

    Article  CAS  Google Scholar 

  54. Neuwald AF, Altschul SF (2016) Bayesian top-down protein sequence alignment with inferred position-specific gap penalties. PLoS Comput Biol [Internet] 12(5):e1004936. [cited 2016 Nov 15]. Available from: http://dx.plos.org/10.1371/journal.pcbi.1004936

    Article  Google Scholar 

  55. Gaschen B, Kuiken C, Korber B, Foley B (2001) Retrieval and on-the-fly alignment of sequence fragments from the HIV database. Bioinformatics [Internet] 17(5):415–418. [cited 2016 Nov 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11331235

    Article  CAS  Google Scholar 

  56. Lemey P, Pybus OG, Wang B, Saksena NK, Salemi M, Vandamme A-M (2003) Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci U S A [Internet] 100(11):6588–6592. [cited 2016 Jun 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12743376

    Article  CAS  Google Scholar 

  57. Smith TF, Srinivasan A, Schochetman G, Marcus M, Myers G (1988) The phylogenetic history of immunodeficiency viruses. Nature [Internet] 333(6173):573–575. [cited 2013 Apr 1]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3131682

    Article  CAS  Google Scholar 

  58. Myers G, Korber B, Berzofksy JA, Smith RF, Pavlakis GN (1992) Human retroviruses and AIDS 1992: a compilation and analysis of nucleic acid and amino acid sequences [Internet]. Los Alamos National Laboratory, Los Alamos. Available from: http://www.hiv.lanl.gov/

    Google Scholar 

  59. Hughes GJ, Fearnhill E, Dunn D, Lycett SJ, Rambaut A, Leigh Brown AJ, Emerman M (2009) Molecular phylodynamics of the heterosexual HIV epidemic in the United Kingdom. PLoS Pathog [Internet] 5(9):e1000590. [cited 2016 Nov 15]. Available from: http://dx.plos.org/10.1371/journal.ppat.1000590

    Article  Google Scholar 

  60. Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A et al (2000) Timing the ancestor of the HIV-1 pandemic strains. Science [Internet] 288(5472):1789–1796. [cited 2016 Nov 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10846155

    CAS  Google Scholar 

  61. Robbins KE, Lemey P, Pybus OG, Jaffe HW, Youngpairoj AS, Brown TM et al (2003) U.S. Human immunodeficiency virus type 1 epidemic: date of origin, population history, and characterization of early strains. J Virol [Internet] 77(11):6359–6366. [cited 2016 Nov 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12743293

    Article  CAS  Google Scholar 

  62. Pépin J, Labbé A-C (2008) Noble goals, unforeseen consequences: control of tropical diseases in colonial Central Africa and the iatrogenic transmission of blood-borne viruses. Trop Med Int Health [Internet] 13(6):744–753. [cited 2016 Oct 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18397182

    Article  Google Scholar 

  63. Worobey M, Watts TD, McKay RA, Suchard MA, Granade T, Teuwen DE et al (2016) 1970s and “Patient 0” HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature [Internet] 539(7627):98–101. [cited 2016 Dec 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27783600

    Article  CAS  Google Scholar 

  64. Pagán I, Holguín Á (2013) Reconstructing the timing and dispersion routes of HIV-1 subtype B epidemics in the Caribbean and Central America: a phylogenetic story. PLoS One [Internet] 8(7):e69218. [cited 2016 Dec 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23874917

    Article  Google Scholar 

  65. Cabello M, Junqueira DM, Bello G (2015) Dissemination of nonpandemic Caribbean HIV-1 subtype B clades in Latin America. AIDS [Internet] 29(4):483–492. [cited 2016 Dec 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25630042

    Article  Google Scholar 

  66. Foley B, Pan H, Buchbinder S, Delwart EL (2000) Apparent founder effect during the early years of the San Francisco HIV type 1 epidemic (1978–1979). AIDS Res Hum Retroviruses [Internet] 16(15):1463–1469. [cited 2016 Dec 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11054259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Foley PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Foley, B.T. (2017). HIV and SIV Evolution. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_5

Download citation

Publish with us

Policies and ethics