Skip to main content

Gene Therapy Blueprints for NeuroAIDS

  • Chapter
  • First Online:
Global Virology II - HIV and NeuroAIDS

Abstract

Since the start of the HIV/AIDS pandemic, 37 years ago, early work produced evidence for CNS involvement and that HIV-1B infection could penetrate the brain. Since then, a plethora of studies further identified many host proteins, RNAs, and genes implicated in brain involvement consequent to HIV-1B infection. This chapter summarizes the various types of gene therapy platforms available in recent years for neuroAIDS. This is both important and complex and should be validated meticulously to reduce the risk of malfunction of genes and network pathways other than those under the specific molecular treatments intended. Consequently, we describe several of the genes known to be involved in neuroAIDS for potential application for various techniques of gene therapy. With more than 179,962 publications using gene therapy, as of February 27, 2017, where are all the clinically appropriate products applying all this knowledge? Ethical considerations of gene modification are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interacting genes and proteins can compose genetic circuits. These can empower cells to individually counter environmental and signal inputs. Moreover, communication and decision-making can ensue.

  2. 2.

    Inteins are protein introns, parts of proteins that self-excise analogously to DNA genome and messenger RNA introns. Inteins were discovered decades ago and have resurfaced as a twenty-first-century bioengineering tool.

  3. 3.

    PM1 cells are a human T-cell line, which has exceptional susceptibility to infection by primary HIV-1 isolates.

  4. 4.

    A review of the presence of numerous cytokine and chemokine mediators of neuroinflammation and neurodegeneration includes HIV encephalitis among other inflammatory diseases [103].

  5. 5.

    Electroporation induces pores in cell membranes using controlled electrical pulses [197].

  6. 6.

    The melittin 26-amino sequence oligopeptide is GIGAVLKVLTTGLPALISWIKRKRQQ. Melittin disrupts the HIV envelope by inducing holes [216].

References

  1. Joseph J, Cinque P, Colosi D, Dravid A, Ene L, Fox H, Gabuzda D, Gisslen M, Joseph SB, Letendre S, Mukerji SS, Nath A, Perez-Valero I, Persaud D, Price RW, Rao VR, Sacktor N, Swanstrom R, Winston A, Wojna V, Wright E, Spudich S (2016) Highlights of the global HIV-1 CSF escape consortium meeting, 9 June 2016, Bethesda, MD, USA. J Vir Erad 2:243–250

    Google Scholar 

  2. McMillan Publishers Limited (2016) Nature. [Online] [cited 2016 October 3. Available from: http://www.nature.com/subjects/synthetic-biology

  3. Chopra P, Kamma A (2006) Engineering life through synthetic biology. In Silico Biol 6(0038):38–49. http://www.bioinfo.de/isb/2006/06/0038/

  4. Greenwood J (2016) Biotechnology Innovation Organization. [Online] [cited 2016 October 4]. Available from: https://www.bio.org/articles/synthetic-biology-explained

  5. Opdyke WF (1992) Ph.D. dissertation. Refactoring object-oriented frameworks. University of Illinois at Urbana-Champaign. See ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z

  6. Fowler M, Kent Beck K, John Brant J, William Opdyke W, Roberts D (2002) Refactoring: improving the design of existing code. https://www.csie.ntu.edu.tw/~r95004/Refactoring_improving_the_design_of_existing_code.pdf

  7. Organization for Economic Co-Operation and Development (2010) Symposium on opportunities and challenges in the emerging field of synthetic biology. OECD Publishing, London

    Google Scholar 

  8. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Google Scholar 

  9. Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, Church G (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 23:1050–1054

    Google Scholar 

  10. Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA 3rd et al (2007) Genome transplantation in bacteria: changing one species to another. Science 317:632–638

    Article  CAS  PubMed  Google Scholar 

  11. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 29:1215–1220

    Article  CAS  Google Scholar 

  12. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  CAS  PubMed  Google Scholar 

  13. Patel K, Hernán MA, Williams PL, Seeger JD, McIntosh K, Van Dyke RB, Seage GR 3rd, Pediatric AIDS Clinical Trials Group 219/219C Study Team (2016) Long-term effectiveness of highly active antiretroviral therapy on the survival of children and adolescents with HIV infection: a 10-year follow-up study. Oxford J 63(8):507–515

    Google Scholar 

  14. Klatt EC. Pathology of HIV/AIDS. Version 27 (Mercer University School of Medicine Savannah). April 25, 2016. http://library.med.utah.edu/WebPath/AIDS2016.PDF

  15. Manjunath N (2013) Newer Gene editing technologies toward HIV Gene therapy. Virus 5(11):2748–2766

    Article  CAS  Google Scholar 

  16. Khalili K (2015) Jennifer Gordon, Laura Cosentino, and Wenhui Hu. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 21(3):310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doudna J (2015) How CRISPR lets us edit our DNA. In the TED conference; 2015; London. https://www.ted.com/talks/jennifer_doudna_we_can_now_edit_our_dna_but_let_s_do_it_wisely

  18. Addgene: The nonprofit plasmid repository (2016) [Online] [cited 2016 October]. Available from: https://www.addgene.org/CRISPR/guide/

  19. Sander JD, Joung JK (2014) CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol 32(4):347–355. PMCID: PMC4022601. NIHMSID: NIHMS581755

    Google Scholar 

  20. Larson MH (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8:2180–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Corrigendum: elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 Gene editing. Sci Rep 6:28213. doi:10.1038/srep28213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K (2016) Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 6(22555):1–15. https://www.ncbi.nlm.nih.gov/pubmed/26939770

  23. Tsui CK, Gupta A, Bassik MC (2017) Finding host targets for HIV therapy. Nat Genet 49(2):175–176. doi:10.1038/ng.3777

    Article  CAS  PubMed  Google Scholar 

  24. Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P, Monel B, Schumann K, Yu H, Krupzcak KM, Garcia-Beltran W, Piechocka-Trocha A, Krogan NJ, Marson A, Sabatini DM, Lander ES, Hacohen N, Walker BD (2017) A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49(2):193–203. doi:10.1038/ng.3741. Epub 2016 Dec 19

    Article  CAS  PubMed  Google Scholar 

  25. Harper KN (2017) New research on using CRISPR/Cas9 to treat HIV. AIDS 31(4):N7. PMID: 27755113. doi:10.1097/QAD.0000000000001294

    Google Scholar 

  26. Bialek JK, Dunay GA, Voges M, Schafer C, Spohn M, Stucka R, Hauber J, Lange UC (2016) Targeted HIV-1 latency reversal using CRISPR/Cas9-derived transcriptional activator systems. PLoS One 11(6):e0158294. doi:10.1371/journal.pone.0158294. eCollection 2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C (2015) The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology 12:22. Published online 2015. doi:10.1186/s12977-015-0150-z. PMCID: PMC4359768

  28. Ueda S, Ebina H, Kanemura Y (2016) Misawa N1, Koyanagi Y. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiol Immunol 60(7):483–496. doi:10.1111/1348-0421.12395

    Article  CAS  PubMed  Google Scholar 

  29. Yoder KE, Bundschuh R (2016) Host double strand break repair generates HIV-1 strains resistant to CRISPR/Cas9. Sci Rep 6:29530. doi:10.1038/srep29530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lebbink RJ, de Jong DC, Wolters F, Kruse EM, van Ham PM, Wiertz EJ, Nijhuis M (2017) A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 7:41968. doi:10.1038/srep41968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang G, Zhao N, Berkhout B, Das AT (2016) A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep 17(11):2819–2826. doi:10.1016/j.celrep.2016.11.057

    Article  CAS  PubMed  Google Scholar 

  32. Herrera-Carrillo E, Berkhout B (2016) Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 44(5):1355–1365

    Article  CAS  PubMed  Google Scholar 

  33. Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ, Doudna J, Simon V, Krogan NJ, Marson AA (2016) Cas9 Ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Rep 17(5):1438–1452. doi:10.1016/j.celrep.2016.09.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Broad Institute. Researchers unlock new CRISPR system for targeting RNA. June 2, 2016. https://www.broadinstitute.org/news/8267

  35. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Genetic Engineering & Biotechnology News. GEN. [Online]; 2016 [cited 2016 October]. Available from: https://geneng.omeda.com/gen/includes/GEN_Top_Articles_on_Genome_Editing.pdf

  37. Virus uses ‘stolen’ CRISPR to hack its host’s immune system. June 14, 2016. https://phys.org/news/2016-06-virus-stolen-crispr-hack-host.html

  38. Chenard C, Wirth JF, Suttle CA (2016) Cyanobacterium (Nostoc sp.) encode a functional CRISPR Array and a Proteobacterial DNA polymerase B. MBio 7(3):1–11

    Article  Google Scholar 

  39. Chenard C, Wirth JF, Suttle CA (2016) Viruses infecting a freshwater filamentous cyanobacterium (Nostoc sp.) encode a functional CRISPR array and a proteobacterial DNA polymerase B. MBio 7(3):e00667–e00616. doi:10.1128/mBio.00667-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carroll D (2008) Zinc-finger nucleases as Gene therapy agents. Gene Ther 15:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. The Tech Museum of Innovation (2013) Stanford at The Tech Understanding Genetics. [Online]; [cited 2016 October 12]. Available from: http://genetics.thetech.org/original_news/news13

  42. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  43. Quillent C, Oberlin E, Braun J (1998) HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet 351(9095):14–18

    Article  CAS  PubMed  Google Scholar 

  44. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Google Scholar 

  45. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Antunes MS, Smith JJ, Jantz D, Medford JI (2012) Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BioMed Central 12:86

    CAS  Google Scholar 

  47. Clarke ND (1994) A proposed mechanism for the self-splicing of proteins. Proc Natl Acad Sci U S A 91:11084–11088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis EO, Jener PJ, Brooks PC, Colston MJ, Sedgwick SG (1992) Protein splicing in the maturation of M. Tuberculosis RecA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71:201–210

    Article  CAS  PubMed  Google Scholar 

  49. Davis EO, Thangaraj JS, Brooks PC, Colston MJ (1994) Evidence of selection for protein introns in the RecAs of pathogenic mycobacteria. EMBO J 13:699–703

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guan C, Cui T, Rao V, Liao W, Benner J, Lin CL, Comb D (1996) Activation of glycosyl-asparaginase. Formation of active N- terminal threonine by intramolecular autoproteolysis. J Biol Chem 271:1732–1737

    Article  CAS  PubMed  Google Scholar 

  51. Hodges RA, Perler FB, Noren CJ, Jack WE (1992) Protein splicing removes intervening sequences in an archaea DNA polymerase. Nucleic Acid Res 20:6153–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiem HP (2012) Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 10:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee YZ, Lo WC, Sue SC (2017) Computational prediction of new Intein split sites. Methods Mol Biol 1495:259–268

    Article  PubMed  Google Scholar 

  54. New England BioLabs. New England BioLabs. [Online]. 2016 [cited 2016 October]. Available from: https://www.neb.com/products/restriction-endonucleases/hf-nicking-master-mix-time-saver-other/homing-endonucleases/homing-endonucleases

  55. Aubert M, Ryu BY, Banks L, Rawlings DJ, Scharenberg AM, Jerome KR (2011) Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2 I-AniI. PLoS One 6(2):e16825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pérez-Quintero AL, Rodriguez-R LM, Dereeper A et al (2013) An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 8(7):e68464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR (2015) Damaging the integrated HIV Proviral DNA with TALENs. PLoS One 10(5):1–20. e0125652. doi:10.1371/journal.pone.0125652

    Google Scholar 

  59. Pereira CF, Nottet HSLM (2000) The blood-brain barrier in HIV-associated dementia. NeuroAids 3(2):1–10

    CAS  Google Scholar 

  60. Resnick L, Berger JR, Shapshak P, Tourtellotte WW (1988) Early penetration of the blood-brain-barrier by HTLV-III/LAV. Neurology 38:9–15

    Article  CAS  PubMed  Google Scholar 

  61. Resnick L, DiMarzo-Veronese F, Schopbach J, Tourtellotte WW, Ho DD, Muller F, Shapshak P, Gallo RC (1985) Intra-blood-brain-barrier synthesis of HTLV-III specific IgG in patients with AIDS or AIDS-related complex. New Engl J Med 313:1498–1504

    Article  CAS  PubMed  Google Scholar 

  62. Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, Levine AJ, Minagar A, Novembre FJ, Somboonwit C, Nath A, Sinnott JT (2011) Editorial NeuroAIDS Review. AIDS 25:123–141

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shapshak P, Yoshioka M, Sun NCJ, Schiller P (1992) The use of combined immunocytochemistry and in situ hybridization to detect HIV-1 in formalin fixed paraffin embedded brain tissue. Mod Pathol 5:649–654

    CAS  PubMed  Google Scholar 

  64. Abbas N, Riaz A Khan (2014) Molecular Trojan horses as genomic interventions in Neurotherapeutics. In: Pillay V, Choonara YE (eds) Advances in Neurotherapeutic delivery technologies. OMICS Publishing Group, Los Angeles. https://www.esciencecentral.org/ebooks/advances-in-neurotherapeutic-deliverytechnologies/ molecular-trojan-horses-as-genomic-interventions-in-neurotherapeutics.php

  65. Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1(2):131–139

    Article  CAS  PubMed  Google Scholar 

  66. Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Discov Med 6(34):139–143

    PubMed  Google Scholar 

  67. Levine BL, Humeau LM, Boyer J, RR MG, Rebello T, Lu X et al (2006) Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci 103(46):17372–17377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mautino MR (2004) Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDs 16(1):11–26

    Article  Google Scholar 

  69. GFP-lentiviral YL (2009) Vectors targeting for NeuroAIDS. Methods of. Mol Biol 515:177–197

    Google Scholar 

  70. Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N (2016) Adeno-associated virus-based Gene therapy for CNS diseases. Hum Gene Ther 27(7):478–496. doi:10.1089/hum.2016.087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Russel DW, Deyle DR (2010) Adeno- associated virus vector integration. Curr Opin Mol Ther 11(4):442–447

    Google Scholar 

  72. Nussbaum RL, McInnis RR, Willard HF (2015) Thompson & Thompson, genetics in medicine. Elsevier, Toronto, p 278

    Google Scholar 

  73. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8(16):1248–1254

    Article  CAS  PubMed  Google Scholar 

  74. Shi N (2001) Receptor-mediated gene targeting to tissues in the rat in vivo. Pharm Pres 18:1091–1095

    Article  CAS  Google Scholar 

  75. Strayer DS (1996) SV40 as an effective gene transfer vector in vivo. J Biol Chem 271:24741–24746

    CAS  PubMed  Google Scholar 

  76. Strayer DS (1996) SV40 mediates stable gene transfer in vivo. Gene Ther 3:581–587

    CAS  PubMed  Google Scholar 

  77. Cordelier P, Van Bockstaele E, Calarota SA, Strayer DS (2003) Inhibiting AIDS in the central nervous system: Gene delivery to protect neurons from HIV. Mol Ther 7:801–810

    Article  CAS  PubMed  Google Scholar 

  78. Cordelier P, Morse B, Strayer DS (2003) Targeting CCR5 with siRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides 13:281–294

    Article  CAS  PubMed  Google Scholar 

  79. SynBio Standards -BioBrick. Retrieved 27 March, 2014. BioBrick description. http://ocw.metu.edu.tr/pluginfile.php/4339/mod_resource/content/0/week3content.pdf

  80. Reshma P, Endy SD, KnightJr TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  CAS  Google Scholar 

  81. Vick JE, Johnson ET, Choudhary S (2011) Optimized compatible set of BioBrick™ vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92(6):1275–1286

    Article  CAS  PubMed  Google Scholar 

  82. Turner JJ, Williams D, Owen D, Gait MJ (2006) Disulfide conjugation of peptides to Oligonucleotides and their analogs. Curr Protoc Nucleic Acid Chem 24:4.28:4.28.1–4.28.21

    Google Scholar 

  83. Kleckner NJ, Botstein RJ (1977) Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Molec. Biol 116(1):125–159

    CAS  Google Scholar 

  84. Nelson PN, Hooly P, Roden D (2004) Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol 138(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86

    Article  CAS  PubMed  Google Scholar 

  86. Acevedo-Rocha C, Budisa N (2016) Xenomicrobiology: a roadmap for genetic code engineering. Microb Biotechnol 9(5):666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schmidt M (2010) Xenobiology: a new form of life as the ultimate biosafety tool. BioEssays 32(4):322–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flowers CC, Clive W, Jerzy P, Shiaolan Y, Gary JN (1997) Inhibition of recombinant human immunodeficiency virus type 1 replication by a site-specific Recombinase. J Virol 71(4):2685–2692

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sarkar I, Hauber I, Hauber J, Buchholz F (2007) HIV-1 Proviral DNA excision using an evolved Recombinase. Science 29(316):1912–1915

    Article  CAS  Google Scholar 

  90. Kim M, Siliciano RF (2016) Genome editing for clinical HIV isolates. Nat Biotechnol 34:388–389

    Article  CAS  PubMed  Google Scholar 

  91. Karpinski J, Hauber I, Chemnitz J (2016) Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol 34:401–409

    Article  CAS  PubMed  Google Scholar 

  92. Levine AJ, Singh KK, Kallianpur AR (2017) Genetic, epigenetic, and transcriptomic studies of NeuroAIDS. In: Global virology II: HIV and NeuroAIDS. Springer Publ, New York

    Google Scholar 

  93. Levine AJ, Singer E, Shapshak P (2009) The role of host genetics in the susceptibility for HIV-associated Neurocognitive disorders. AIDS Behav 13(1):118–132

    Article  PubMed  Google Scholar 

  94. Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR et al (2012) The National NeuroAIDS tissue consortium brain Gene Array: two types of HIV-associated Neurocognitive impairment. PLoS One 7(9):e46178. doi:10.1371/journal.pone.0046178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Feng Y, Leavitt M, Tritz R, Duarte E, Kang D, Mamounas M, Gilles P, Wong-Staal F, Kennedy S, Merson J, Yu M, Barber JR (2000) Inhibition of CCR5-dependent HIV-1 infection by hairpin ribozyme gene therapy against CC-chemokine receptor 5. Virology 276(2):271–278

    Article  CAS  PubMed  Google Scholar 

  96. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane G protein-coupled receptor. Science 272:872–877

    Google Scholar 

  97. Nomiyama H, Osada N, Yoshie OA (2011) Family tree of vertebrate chemokine receptors for a unified nomenclature. Dev Comp Immunol 35(7):705–715

    Article  CAS  PubMed  Google Scholar 

  98. Cagnon LRJ (2000) Downregulation of the CCR5 beta-chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Antisense Nucleic Acid Drug Dev 10(4):251–261

    Article  CAS  PubMed  Google Scholar 

  99. Wilen CB, Wang J, Tilton JC et al (2011) Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 7(4):1–19

    Article  CAS  Google Scholar 

  100. Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL, Gregory PD, Holmes MC, Torbett BE (2012) Zinc-finger nuclease editing of human CXCR4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther 20(4):849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Van Coillie E, Van Damme J, Opdenakker G (1999) The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10:61–86

    Article  PubMed  Google Scholar 

  102. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/Monocyte Chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV–CNS invasion and NeuroAIDS. J Neurosci 26(4):1098–1106

    Article  CAS  PubMed  Google Scholar 

  103. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. Article ID 480739, 20 pages. http://dx.doi.org/10.1155/2013/480739

  104. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115

    Article  CAS  PubMed  Google Scholar 

  105. Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233(4760):215–219

    Article  CAS  PubMed  Google Scholar 

  106. Khiati A, Chaloin O, Muller S, Tardieu M, Horellou P (2010) Induction of monocyte chemo-attractant protein 1 (MCP/1 CCL2 ) gene expression by human immunodeficiency virus1 tat in human astrocytes is CDK9 dependent. J Neurovirol 16(2):150–167

    Article  CAS  PubMed  Google Scholar 

  107. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367(6459):188–193

    Article  CAS  PubMed  Google Scholar 

  108. Fiala M, Looney DJ, Stins M, Way D, Zhang L, Gan X, Chiappelli F, Schweitzer ES, Shapshak P, Weinand N, Graves MM, Witte M, Kim K-S (1997) TNF- a enhancement of HIV paracellular passage across a brain endothelial cell barrier. Molec Medicine 3:553–564

    CAS  Google Scholar 

  109. Fiala M, Rhodes RH, Shapshak P, Nagano I, Martinez-Maza O, Diagne A, Baldwin G, Graves M (1996) Regulation of HIV-1 infection in astrocytes: expression of Nef, TNF-alpha and IL-6 are enhanced in coculture of astrocytes with macrophages. J Neurovirol 2:158–166

    Article  CAS  PubMed  Google Scholar 

  110. Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M, Fiala M, Way D, Kim KS, Witte MH, Weinand M, Carhart LR, Gendelman HE (1999) Microglial and Astrocyte chemokines regulate Monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 155(5):1599–1611. doi:10.1016/S0002-9440(10)65476-4. PMCID: PMC1866982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weiss JM, Nath A, Major EO, Berman JW (1999) HIV-1 tat induces Monocyte Chemoattractant protein-1-mediated Monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human Monocytes. J Immunol 163(5):2953–2959

    CAS  PubMed  Google Scholar 

  112. Kumai Y, Ooboshi H, Takada J, Kamouchi M, Kitazono T, Egashira K, Ibayashi S, Iida M (2004) Anti-monocyte chemoattractant protein-1 gene therapy protects against focal brain ischemia in hypertensive rats. J Cereb Blood Flow Metab 24(12):1359–1368

    Article  CAS  PubMed  Google Scholar 

  113. JP L, Agrawal L, Reyes BA, Van Bockstaele EJ, Strayer DS (2007) Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Ther 14(23):1650–1661. Epub 2007 Oct 4

    Article  CAS  Google Scholar 

  114. Schiavoni I, Muratori C, Piacentini V, Giammarioli AM, Federico M (2004) The HIV-1 Nef protein: how an AIDS pathogenetic factor turns to a tool for combating AIDS. Curr Drug Targets Immune Endocr Metabol Disord 4(1):19–27

    Article  CAS  PubMed  Google Scholar 

  115. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C et al (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 15(3):285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–411

    Article  CAS  PubMed  Google Scholar 

  118. Khanlou N, Moore DJ, Chana G (2009) Increased frequency of α-Synuclein in the Substantia Nigra in HIV infection. J Neurovirol 15(2):131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mocchetti I, Bachis A, Campbell LA, Avdoshina V (2014) Implementing neuronal plasticity in NeuroAIDS: the experience of brain-derived Neurotrophic factor and other Neurotrophic factors. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 9(2):80–91

    Article  Google Scholar 

  120. Mocchetti I, Bachis A (2004) Brain-derived neurotrophic factor activation of TrkB protects neurons from HIV-1/gp120-induced cell death. Crit Rev Neurobiol 16(1–2):51–57

    Article  CAS  PubMed  Google Scholar 

  121. Allena SJ, Watson JJ, Shoemarka DK, Baruab NU, Patel NKGDNF (May 2013) NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    Article  CAS  Google Scholar 

  122. Fuchs SP, Desrosiers RC (2016) Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol Ther Methods Clin Dev 3:16068. doi:10.1038/mtm.2016.68. Published online 2016. PMCID: PMC5289440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Huang JS, Letendre S, Marquie-Beck J, Cherner M, McCutchan JA, Grant I et al (2007) Low CSF leptin levels are associated with worse learning and memory performance in HIV-infected men. J Neuroimmune Pharmacol 2:352–358

    Article  CAS  PubMed  Google Scholar 

  124. Perez-Gonzalez R, Alvira-Botero MX, Robayo O, Antequera D, Garzón M, Martín-Moreno AM, Brera B, de Ceballos ML, Carro E (2014) Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice. Gene Ther 21:298–308

    Article  CAS  PubMed  Google Scholar 

  125. Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L (2005) CSF amyloid beta 42 and tau levels correlate with AIDS dementia complex. Neurology 65(9):1490–1492

    Article  CAS  PubMed  Google Scholar 

  126. Brown LA, Scarola J, Smith AJ, Sanberg PR, Tan J, Giunta B (2014) The role of tau protein in HIV-associated neurocognitive disorders. Mol Neurodegener 9:40. doi:10.1186/1750-1326-9-40

    Article  PubMed  PubMed Central  Google Scholar 

  127. Green A, Giovannoni G, Hall-Craggs M, Thompson E, Miller R (2000) Cerebrospinal fluid tau concentrations in HIV infected patients with suspected neurological disease. Sex Transm Infect 76(6):443–446. doi:10.1136/sti.76.6.443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E, Reichelt D, Lohmann H, Husstedt IW (2013) Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol 20:420–428

    Article  CAS  PubMed  Google Scholar 

  129. Jayadev S, Case A, Eastman AJ, Nguyen H, Pollak J, Wiley JC, Möller T, Morrison RS, Gwenn A, Garden GA (2010) Presenilin 2 and the gamma-secretase complex in microglia function Alzheimer’s & dementia. J Alzheimer's Assoc 4(4):T728

    Article  Google Scholar 

  130. Jayadev S, Garden GA (2009) Host and viral factors influencing the pathogenesis of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 4(2):175–189. doi:10.1007/s11481-009-9154-6. Epub 2009 Apr 17

    Article  PubMed  PubMed Central  Google Scholar 

  131. Jayadev S, Case A, Eastman AJ, Nguyen H, Pollak J, Wiley JC (2010) Presenilin 2 is the predominant γ-Secretase in microglia and modulates cytokine release. PLoS One 5(12):e15743. doi:10.1371/journal.pone.0015743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jayadev S, Leverenz JB, Steinbart E, Stahl J, Klunk W et al (2010) Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133:1143–1154

    Article  PubMed  PubMed Central  Google Scholar 

  133. Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol 9(2):106–118. doi:10.1038/nrneurol.2012.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mukerji SS, Locascio JJ, Misra V, Lorenz DR, Holman A, Dutta A (2016) Lipid profiles and APOE4 allele impact midlife cognitive decline in HIV-infected men on antiretroviral therapy. Clin Infect Dis 63(8):1130–1139

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kim J, Yoon J-H, Kim Y-S (2013) HIV-1 tat interacts with and regulates the localization and processing of .Amyloid precursor protein. Chauhan a. PLoS One 8(11):e77972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460(7256):711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rowland-Jones SL, Pinheiro S, Kaul R et al (2001) How important is the ‘quality’ of the cytotoxic T lymphocyte (CTL) response in protection against HIV infection? Immunol Lett 79:15–20

    Article  CAS  PubMed  Google Scholar 

  138. Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, Segal JP, Cao Y, Rowland-Jones SL, Cerundolo V, Hurley A, Markowitz M, Ho DD, Nixon DF, McMichael AJ (1998) Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279(5359):2103–2106

    Article  CAS  PubMed  Google Scholar 

  139. Gabitzsch ES, Xu Y, Yoshida LH, Balint J, Amalfitano A, Jones FR (2009) Novel adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 gag, Pol, Nef despite the presence of Ad5 immunity. Vaccine 27(46):6394–6398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cantin R, Fortin J-F, Lamontagne G, Tremblay M (1997) The acquisition of host-derived major histocompatibility complex class II glycoproteins by human immunodeficiency virus type 1 accelerates the process of virus entry and infection in human T-lymphoid cells. Blood 90:1091–1100

    CAS  PubMed  Google Scholar 

  141. Cantin R, Fortin J-F, Lamontagne G, Tremblay M (1997) The presence of host-derived HLA-DR1 on human immunodeficiency virus type 1 increases viral infectivity. J Virol 71:1922–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lawn SD, Butera ST (2000) Incorporation of HLA-DR into the envelope of human immunodeficiency virus type 1 in vivo: correlation with stage of disease and presence of opportunistic infection. J Virol 74(21):10256–10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rossio JL, Bess J, Henderson LE, Cresswell P, Arthur LO (1995) HLA class II on HIV particles is functional in superantigen presentation to human T-cells: implications for HIV pathogenesis. AIDS Res Hum Retrovir 11:1433–1439

    Article  CAS  PubMed  Google Scholar 

  144. Lesniak MS, Kelleher E, Pardoll D, Cui Y (2005) Targeted gene therapy to antigen-presenting cells in the central nervous system using hematopoietic stem cells. Neurol Res 27(8):820–826

    Article  CAS  PubMed  Google Scholar 

  145. Benedek G, Meza-Romero R, Jordan K, Keenlyside L, Offner H, Vandenbark AA (2015) HLA-DRα1-mMOG-35-55 treatment of experimental autoimmune encephalomyelitis reduces CNS inflammation, enhances M2 macrophage frequency, and promotes neuroprotection. J Neuroinflammation 12:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Wang J, Ye Q, Xu J, Benedek G, Zhang H, Yang Y, Liu H, Meza-Romero R, Vandenbark AA, Offner H, Gao Y (2016) DRα1-MOG-35-55 reduces permanent ischemic brain injury. Transl Stroke Res 8:284–293

    Article  PubMed  CAS  Google Scholar 

  147. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127(Pt 11):2452–2458

    Article  PubMed  Google Scholar 

  148. Berger JR, Kumar M, Kumar A, Fernandez JB, Levin B (1994) Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 8:67–71

    Article  CAS  PubMed  Google Scholar 

  149. Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, Bell J, Hauser KF, Mattson M (2000) Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol 14(3):222–227. Review

    Article  CAS  PubMed  Google Scholar 

  150. Vaughan RA, Kuhar MJ (1996) Dopamine transporter ligand binding domains. Structural and functional properties revealed by limited proteolysis. J Biol Chem 271(35):21672–21680

    Article  CAS  PubMed  Google Scholar 

  151. Zhou W, Lee YM, Guy VC, Freed CR (2009) Embryonic stem cells with GFP knocked into the dopamine transporter yield purified dopamine neurons in vitro and from knock-in mice. Stem Cells 27(12):2952–2961

    CAS  PubMed  Google Scholar 

  152. Gupta S, Bousman CA, Chana G, Cherner M, Heaton RK, Deutsch R, Ellis RJ, Grant I, Everall IP (2011) Dopamine receptor D3 genetic polymorphism (rs6280TC) is associated with rates of cognitive impairment in methamphetamine-dependent men with HIV: preliminary findings. J Neurovirol 17:239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Goldman-Rakic PS, Muly IEC, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  CAS  PubMed  Google Scholar 

  154. Bousman CA, Cherner M, Atkinson JH, Grant I, Tsuang MT, Everall IP (2010) Impact of the catechol-O-methyl-transferase Val158Met polymorphism on executive functioning in the context of HIV-infection and methamphetamine dependence. Neurobehav HIV Med 2:1–11

    Article  CAS  Google Scholar 

  155. Ferris MJ, Mactutus CF, Booze RM (2008) Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: current status of dopamine system vulnerability in NeuroAIDS. Neurosci Biobehav Rev 32:883–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee TT, Chana G, Gorry PR, Ellett A, Bousman CA, Churchill MJ, Gray LR, Everall IP (2015) Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV. J Neurovirol 21(5):535–543. doi:10.1007/s13365-015-0354-y. Epub 2015 Jun 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98:6917–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Masliah E, Roberts ES, Langford D, Everall I, Crews L, Adame A, Rockenstein E, Fox HS (2004) Patterns of gene dysregulation in the frontal cortex of patients with HIV encephalitis. J Neuroimmunol 157:163–175

    Article  CAS  PubMed  Google Scholar 

  160. Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453

    Article  CAS  PubMed  Google Scholar 

  161. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105(7):2711–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270

    Article  CAS  PubMed  Google Scholar 

  163. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent BDNF AND gp120 195 mechanisms. Science 286:1358–1362

    Article  CAS  PubMed  Google Scholar 

  164. Han BH, D’Costa A, Back SA, Parsadanian M, Patel S, Shah AR, Gidday JM, Srinivasan A, Deshmukh M, Holtzman DM (2000) BDNF blocks caspase-3 activation in neonatal hypoxiaischemia. Neurobiol Dis 7:38–53

    Article  CAS  PubMed  Google Scholar 

  165. Bachis A, Avdoshina V, Zecca L, Parsadanian M (2012) Mocchetti. Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci 32(28):9477–9484. doi:10.1523/JNEUROSCI.0865-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tong J, Buch S, Yao H, Wu C, Tong HI, Wang YM et al (2014) Monocytes-derived macrophages mediated stable expression of human brain-derived Neurotrophic factor, a novel therapeutic strategy for NeuroAIDS. PLoS One 9(2):e82030. doi:10.1371/journal.pone.0082030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 tat. Traffic 13(3):355–363

    Article  CAS  PubMed  Google Scholar 

  168. Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, Esquieu D, Barbier P, de Mareuil J, Braguer D, Kaleebu P, Yirrell DL, Loret EP (2004) The glutamine-rich region of the HIV-1 tat protein is involved in T-cell apoptosis. J Biol Chem 279(46):48197–48204

    Article  CAS  PubMed  Google Scholar 

  169. Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB (1998) Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol 72(11):8952–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Izmailova B, Bertley FM, Huang Q et al (2003) HIV-1 tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med 9(2):191–197

    Article  CAS  PubMed  Google Scholar 

  171. Cafaro A (1999) A. Gaputo, G. Fracasso. Control of SHIV-89, 6P-infection of cynomolgus monkeys by HIV-1 tat protein vaccine. Nat Med 5(6):643–650

    Article  CAS  PubMed  Google Scholar 

  172. Goldstein G, Manson K, Tribbick G, Smith R (2000) Minimization of chronic plasma viremia in rhesus macaques immunized with synthetic HIV-1 tat peptides and infected with a chimeric simian/huma immunodeficiency virus (SHIV33). Vaccine 18(25):2789–2795

    Article  CAS  PubMed  Google Scholar 

  173. Pauza CD, Trivedi P, Wallace M et al (2000) Vaccination with tat toxoid attenuates disease in simian/HIV-challenged macaques. Proc Nat Acad Sci USA 97(7):3515–3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mascarell L, Bauche C, Fayolle C, Diop OM, Dupuy M, Nougarede N, Perraut R, Ladant D, Leclerc C (2006) Delivery of the HIV-1 tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non-human primates. Vaccine 24(17):3490–3499. Epub 2006 Feb 21

    Article  CAS  PubMed  Google Scholar 

  175. Mascarell L, Fayolle G, Bauche G, Ladant D, Leclerc G (2005) Induction of neutralizing antibodies and Th1-polarized and GD4-independent GD8 + T-cell responses following delivery of human immunodeficiency virus type 1 tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 79(15):9872–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  CAS  PubMed  Google Scholar 

  177. Kaul M (2009) HIV-1 associated dementia: update on pathological mechanisms and therapeutic approaches. Curr Opin Neurol 22(3):315–320

    Article  PubMed  PubMed Central  Google Scholar 

  178. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cao S, Chengxiang W (2011) Yongbo Yang, Lynn F Sniderhan, Sanjay B Maggirwar, Stephen Dewhurst and Yuanan Lu. Lentiviral vector-mediated stable expression of sTNFR-Fc in human macrophage and neuronal cells as a potential therapy for NeuroAIDS. J Neuroinflammation 9:48

    Article  CAS  Google Scholar 

  180. Saha RN, Pahan K (2003) Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86:1057–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shi B, Raina J, Lorenzo A, Busciglio J, Gabuzda D (1998) Neuronal apoptosis induced by HIV-1 tat protein and TNF-alpha: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia. J Neurovirol 4:281–290

    Article  CAS  PubMed  Google Scholar 

  182. Theodore S, Cass WA, Nath A, Steiner J, Young K, Maragos WF (2006) Inhibition of tumor necrosis factor-alpha signaling prevents human immunodeficiency virus-1 protein tat and methamphetamine interaction. Neurobiol Dis 3(3):663–668

    Article  CAS  Google Scholar 

  183. Murphy PM (2002) International Union of Pharmacology. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229

    Article  CAS  PubMed  Google Scholar 

  184. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283:R7–R28

    Article  CAS  PubMed  Google Scholar 

  185. Bose S, Kim S, Oh Y, Moniruzzaman M, Lee G, Cho J (2016) Effect of CCL2 on BV2 microglial cell migration: involvement of probable signaling pathways. Cytokine 81:39–49. doi:10.1016/ j.cyto.2016.02.001. Epub 2016 Feb 12

    Article  CAS  PubMed  Google Scholar 

  186. Bose S, Cho J (2013) Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharm Res 36(9):1039–1050. doi:10.1007/s12272-013-0161-z. Epub 2013 Jun 15

    Article  CAS  PubMed  Google Scholar 

  187. Ansari AW (2006) Nupur Bhatnagar, Oliver Dittrich-Breiholz, Michael Kracht, Reinhold E. Schmidt and Hans Heiken host chemokine (C-C motif) ligand-2 (CCL2) is differentially regulated in HIV type 1 (HIV-1)-infected individuals. Int Immunol 18(10):1443–1451

    Article  CAS  PubMed  Google Scholar 

  188. Chen JD, Bai X, Yang AG, Cong Y, Chen SY (1997) Inactivation of HIV- 1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nature Med 3:1110–1116

    Article  CAS  PubMed  Google Scholar 

  189. Goila R, Banerjea AC (1998) Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNA- enzyme. FEBS Lett 436:233–238

    Article  CAS  PubMed  Google Scholar 

  190. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O’connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307(5714):1434–1440

    Article  CAS  PubMed  Google Scholar 

  191. Surabhi RM, Gaynor RB (2002) RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type 1 replication. J Virol 76:12963–12973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chang LJ, Liu X, He J (2005) Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 12:1133–1144

    Article  CAS  PubMed  Google Scholar 

  193. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T (1995) Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28:495–500

    Article  CAS  PubMed  Google Scholar 

  194. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835

    Article  CAS  PubMed  Google Scholar 

  195. Sharma S (2007) Age-related nonhomologous end joining activity in rat neurons. Brain Res Bull 73:48–54

    Article  PubMed  Google Scholar 

  196. Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R (2016) High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell 165(7):1803–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Potter H (2003) Transfection by electroporation. Curr Protoc Mol Biol 62(I:9.3:9.3.1–9.3.6)

    Google Scholar 

  198. Jung U, Urak K, Veillette M, Nepveu-Traversy MÉ, Pham QT, Hamel S (2015) Preclinical assessment of mutant human TRIM5α as an anti-HIV-1 Transgene. Hum Gene Ther 26(10):664–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dominguez C, Folkers GE, Boelens R (2006) RING domain proteins. Handbook of metalloproteins. 8. 2006. Wiley Online Library http://onlinelibrary.wiley.com

  200. Kohn DB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P, Qian-lin Hao QL, Chen Zhou C, Bahner I, Kearns K, Brody K, Fox S, Haden E, Wilson K, Salata C, Dolan C, Wetter C, Aguilar-Cordova E, Church J (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 94(1):368–371

    CAS  PubMed  Google Scholar 

  201. de Almeida SM, Rotta I, Ribeiro CE (2017) Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization—case study. J Neurovirol. doi:10.1007/s13365-017-0518-z

  202. Arenas-Pinto A, Stohr W, Clarke A (2017) Evaluation of CSF virological escape in patients on long-term PI monotherapy. Antivir Ther. https://www.ncbi.nlm.nih.gov/pubmed/28234235

  203. Eden A, Nilsson S, Hagberg L (2016) Asymptomatic Cerebrospinal fluid HIV-1 viral blips and viral escape during antiretroviral therapy: a longitudinal study. J Infect Dis 214(12):1822–1825

    Article  PubMed  Google Scholar 

  204. Ferretti F, Gisslen M, Cinque P, Price RW, Cerebrospinal Fluid HIV (2015) Escape from antiretroviral therapy. Curr HIV/AIDS Rep 12(2):280–288

    Article  PubMed  Google Scholar 

  205. Jerome KR (2015) Grantome (National institutes of Health). [Online]; [cited 2016 October 9]. Available from: http://grantome.com/grant/NIH/U19-AI096111-04-8300#panel-abstract

  206. Nowacek A, Gendelman HE (2009) NanoART, neuroAIDS and CNS drug delivery. Nanomedicine (Lond) 4(5):557–574. doi:10.2217/nnm.09.38. PMCID: PMC2746674. NIHMSID: NIHMS132032

  207. Nanotechnology (2008) Nano werk. [Online]; [cited 2016 October 12]. Available from: http://www.nanowerk.com/spotlight/spotid=6269.php

  208. Mamo T (2010) E Ashley Moseman, Nagesh Kolishetti, Carolina Salvador-Morales, Jinjun Shi, Daniel R Kuritzkes et al. emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 5(2):269–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27(6):567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6):709–717

    Article  CAS  PubMed  Google Scholar 

  211. Liu Z, Winters M, Holodniy M, Dai H (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem 26(12):2023–2027

    Article  CAS  Google Scholar 

  212. Berges BKRM (2011) The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis and treatment. Retrovirology 8(65):65–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL et al (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell Press 134(4):577–586

    CAS  Google Scholar 

  214. Jayant D (2015) Venkata, Atluri VSR, and Agudelo M. Sustained-release nanoART formulation for the treatment of NeuroAIDS. Int J Nanomedicine 10:1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, Ruiz A, Yndart A, Atluri V, El-Hage N, Khalili K, Nair M (2016) Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep 6:25309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hood JL, Jallouck AP, Campbell N, Ratner L, Wickline SA (2013) Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral Ther 19:95–103

    Google Scholar 

  217. Eze OBL, Nwodo OFC, Ogugua VN (2016) Therapeutic effect of honey bee venom. J Pharm Chem Biol Sci 4(1):48–53

    CAS  Google Scholar 

  218. Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, Apamin and Mastoparan. Toxins (Basel) 7(4):1126–1150. Published online 2015. doi:10.3390/toxins7041126. PMCID: PMC4417959

  219. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  PubMed  Google Scholar 

  220. Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130:6896–6897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  222. Fox HS, Howard E (2012) Gendelman. Commentary: animal models of NeuroAIDS. J Neuroimmune Pharmacol 7(2):301–305

    Article  PubMed  PubMed Central  Google Scholar 

  223. Dizaj SM, Jafari S, Khosroushahi AY (2014) A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 9:252. http://www.nanoscalereslett.com/content/9/1/252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Rodriguez E (2016) Ethical issues in genome editing using Crispr/Cas9 system. J Clin Res Bioeth 7:266. doi:10.4172/2155-9627.1000266

    Google Scholar 

  225. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. www.ncbi.nlm.nih.gov/genome/

  228. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Perry P (2016) Genetic literacy project. [Online]; [cited 2016 October 6]. Available from: https://www.geneticliteracyproject.org/2016/10/05/pentagon-wants-develop-safe-genes-stop-biohackers-making-weapons-crispr/

  230. DIY BIO: Codes. [Online]; 2011 [cited 201 October 6]. Available from: https://diybio.org/codes/

  231. Yu J (2010) Boston University. [Online]; [cited 2016 October]. Available from: http://www.bu.edu/writingprogram/files/2010/08/Yu0910.pdf

  232. Wang Z et al (2016) CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep 15: pages 1–9. doi:http://dx.doi.org/10.1016/j.celrep.2016.03.042

Download references

Acknowledgments

The authors report no conflicts.

Conflict of interest The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Shapshak PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Rodriguez, H.E. et al. (2017). Gene Therapy Blueprints for NeuroAIDS. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_37

Download citation

Publish with us

Policies and ethics