Skip to main content

HIV-1 Envelope (ENV) GP160 Trimer Protein Complex SPIKE as a Recombinant Macromolecular Assembly Vaccine Component Candidate: Current Opinion

  • Chapter
  • First Online:

Abstract

The development of an HIV-1/AIDS vaccine has posed great challenges over the last two decades to the international scientific community. The synthesis of a viable vaccine component has gained momentum in recent years after several learning stories with partial success. The moderate efficacy showed by RV144 (ENV-gp120, Gag and Pro) vaccine (Thai trial vaccine) in clinical trials provided impetus to the study during the last decade. The technological challenge in the production of the viral spike as a viable vaccine component is realized since the conclusion of the Thai trial (2009). The results from the NIAID-sponsored South African HVTN 702 (ALVAC-HIV + subtype C gp120/MF59 2700) trial are awaited. The HIV-1 envelope spike [ENV GP160 trimer complex] is being exploited as a promising vaccine candidate in recent years. A number of knowledge points on the viral spike are now available using data derived from several disciplines of biotechnology. The production of a native conformation of the HIV-1 ENV GP160 trimer SPIKE with appropriate glycosylation taking into consideration about 39,000 variants of known GP160 sequences among known subtypes (as available at the LANL database) is found to be nontrivial. The known HIV-1 ENV GP160 trimer SPIKE electron microscopy structure at 4.19 Å resolution shows nine interfaces with three different types. Their characteristic features are interesting towards the development of a stable yet effective trimer complex. The GP41-GP41 and GP41-GP120 interfaces are characteristics of equal polar to non-polar residues, and the GP120-GP120 interfaces are predominantly polar in nature. These data find application in the development of an immunologically viable vaccine component.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shin SY (2016) Recent update in HIV vaccine development. Clin Exp Vaccine Res 5(1):6–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adis International Ltd (2003) HIV gp120 vaccine - VaxGen: AIDSVAX, AIDSVAX B/B, AIDSVAX B/E, HIV gp120 vaccine - Genentech, HIV gp120 vaccine AIDSVAX - VaxGen, HIV vaccine AIDSVAX - VaxGen. Drugs R D 4(4):249–253

    Article  Google Scholar 

  3. Uberla K (2008) HIV vaccine development in the aftermath of the STEP study: re-focus on occult HIV infection? PLoS Pathog 4(8):e1000114

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361(23):2209–2220

    Article  CAS  PubMed  Google Scholar 

  5. Rerks-Ngarm S, Paris RM, Chunsutthiwat S, Premsri N, Namwat C, Bowonwatanuwong C et al (2013) Extended evaluation of the virologic, immunologic, and clinical course of volunteers who acquired HIV-1 infection in a phase III vaccine trial of ALVAC-HIV and AIDSVAX B/E. J Infect Dis 207(8):1195–1205

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, DiazGranados C, Janes H, Huang Y, de Camp AC, Metch B et al (2016b) Selection of HIV vaccine candidates for concurrent testing in an efficacy trial. Curr Opin Virol 17:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kangueane P, Kayathri R, Sakharkar MK, Flower DR, Sadler K, Chiappelli F (2008) Designing HIV gp120 peptide vaccines: rhetoric or reality for neuro-AIDS. The spectrum of neuro-AIDS disorders: pathophysiology, diagnosis, and treatment. pp 105–119. ASM Press, Washington, DC, USA

    Google Scholar 

  8. Sanders RW, Moore JP (2017) Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol Rev 275:161–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doores KJ (2015) The HIV glycans shield as a target for broadly neutralizing antibodies. FEBS J 282:4679–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Taeye SW, Moore JP, Sanders RW (2016) HIV-1 envelope Trimer design and immunization strategies to induce broadly neutralizing antibodies. Trends Immunol 37(3):221–232

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ringe RP, Yasmeen A, Ozorowski G, Go EP, Pritchard LK, Guttman M et al (2015) Influences on the design and purification of soluble, recombinant native-like HIV-1 envelope glycoprotein Trimers. J Virol 23(89):12189–12210

    Article  Google Scholar 

  12. Go EP, Cupo A, Ringe R, Pugach P, Moore JP, Desaire H (2016) Native conformation and canonical disulfide bond formation are interlinked properties of HIV-1 Env glycoproteins. J Virol 6(90):2884–2894

    Article  Google Scholar 

  13. AlSalmi W, Mahalingam M, Ananthaswamy N, Hamlin C, Flores D, Gao G et al (2015) A new approach to produce HIV-1 envelope Trimers: both cleavage and proper glycosylation are essential to generate authentic Trimers. J Biol Chem 290(32):19780–19795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verkerke HP, Williams JA, Guttman M, Simonich CA, Liang Y, Filipavicius M et al (2016) Epitope-independent purification of native-like envelope Trimers from diverse HIV-1 isolates. J Virol 90(20):9471–9482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sowmya G, Shamini G, Anita S, Sakharkar M, Mathura V, Rodriguez H et al (2011) HIV-1 envelope accessible surface and polarity: clade, blood, and brain. Bioinformation 6(2):48–56

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E et al (2011) Editorial neuroAIDS review. AIDS 25(2):123–141

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cicala C, Nawaz F, Jelicic K, Arthos J, Fauci AS (2016) HIV-1 gp120: a target for therapeutics and vaccine design. Curr Drug Targets 17(1):122–135

    Article  CAS  PubMed  Google Scholar 

  18. Bradley T, Fera D, Bhiman J, Eslamizar L, Lu X, Anasti K et al (2016) Structural constraints of vaccine-induced tier-2 autologous HIV neutralizing antibodies targeting the receptor-binding site. Cell Rep 14(1):43–54

    Article  CAS  PubMed  Google Scholar 

  19. Grimm SK, Battles MB, Ackerman ME (2015) Directed evolution of a yeast-displayed HIV-1 SOSIP gp140 spike protein toward improved expression and affinity for conformational antibodies. PLoSOne 10(2):e0117227

    Article  Google Scholar 

  20. Guenaga J, de Val N, Tran K, Feng Y, Satchwell K, Ward AB et al (2015) Well-ordered trimeric HIV-1 subtype B and C soluble spike mimetics generated by negative selection display native-like properties. PLoS Pathog 11(1):e1004570

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pancera M, Zhou T, Druz A, Georgiev IS, Soto C, Gorman J et al (2014) Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514(7523):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ward AB, Wilson IA (2017) The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol Rev 275(1):21–32

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Pan J, Cai Y, Grigorieff N, Harrison SC, Chen B (2017) Conformational states of a soluble, uncleaved HIV-1 envelope trimer. J Virol 91(10):e00175–e00117. In Press. doi:10.1128/JVI.00175-17

    PubMed  Google Scholar 

  24. Liu CC, Zheng XJ, Ye XS (2016) Broadly neutralizing antibody-guided carbohydrate-based HIV vaccine design: challenges and opportunities. Chem Med Chem 4:357–362

    Article  Google Scholar 

  25. Foley B, Leitner T, Apetrei C, Hahn B, Mizrachi I, Mullins J et al (eds) (2015) HIV Sequence Compendium. [updated: 2016 31; cited: 2017 Mar 20]. Available from: https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html

  26. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. [cited: 2017 Mar 20]. Available from: http://www.rcsb.org/pdb/home/home.do

  27. Tsodikov OV, Record MT Jr, Sergeev YV (2002) Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23:600–609

    Article  CAS  PubMed  Google Scholar 

  28. Dassault Systemes BIOVIA, BIOVIA Discovery Studio Visualizer, v16.1.0.15350, San Diego: Dassault Systemes (2015). [cited: 2017 Mar 20]. Available from: http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php

  29. Jones S, Thronton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We wish to express our sincere appreciation to all members of Biomedical Informatics (P) Ltd., India, and VIT University, India, for several discussions on the subject of this article. We acknowledge the international scientific, governmental, policy and pharmaceutical communities for providing a plethora of data for gleaning knowledge on HIV-1 envelope spike [ENV GP160 (GP120/GP41)] over the last couple of decades. This research is funded by Biomedical Informatics (P) Ltd.

Conflict of interest The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandjassarame Kangueane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Nilofer, C., Mohanapriya, A., Kangueane, P. (2017). HIV-1 Envelope (ENV) GP160 Trimer Protein Complex SPIKE as a Recombinant Macromolecular Assembly Vaccine Component Candidate: Current Opinion. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_36

Download citation

Publish with us

Policies and ethics