Skip to main content

Clinical Relevance of Humanized Mice

  • Chapter
  • First Online:
  • 816 Accesses

Abstract

Mice have been used in basic science research over decades as small in vivo models to study human immunity and disease. Despite their shortcomings, they have yielded valuable information that lead to the development of effective therapies against cancer and other infectious diseases. However, the appearance of HIV in the 1980s posed a major challenge; the virus only targeted human CD4 T cells, thus rendering mouse models not useful to study the disease. In the late 1980s, researchers at various institutions began developing chimeric mouse models. Immunodeficient mice were transplanted with human immune cells or hematopoietic tissues that gave rise to chimeric mice that carried a somewhat functional human immune system. These early chimeric animals proved quite valuable in the study of HIV pathogenesis and latency. However, the lack of peripheral reconstitution limited the scope of many studies. During the past few years, more advanced models have been developed. The new chimeric animals have been peripherally reconstituted with most if not all lineage cells of the human immune system. As such, humanized mice were no longer used only for HIV but also for other diseases including cancer. Here, we will discuss the older and newer systems and examine their relevance in the development of new and effective therapies against disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335(6187):256–259

    Article  CAS  PubMed  Google Scholar 

  2. Mosier DE, Gulizia RJ, Baird SM, Wilson DB, Spector DH, Spector SA (1991) Human immunodeficiency virus infection of human-PBL-SCID mice. Science 251(4995):791–794

    Article  CAS  PubMed  Google Scholar 

  3. Mosier DE, Gulizia RJ, MacIsaac PD, Torbett BE, Levy JA (1993) Rapid loss of CD4+ T cells in human-PBL-SCID mice by noncytopathic HIV isolates. Science 260(5108):689–692

    Article  CAS  PubMed  Google Scholar 

  4. Roth MD, Tashkin DP, Choi R, Jamieson BD, Zack JA, Baldwin GC (2002) Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis 185(5):701–705

    Article  CAS  PubMed  Google Scholar 

  5. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241(4873):1632–1639

    Article  CAS  PubMed  Google Scholar 

  6. Aldrovandi GM, Feuer G, Gao L, Jamieson B, Kristeva M, Chen IS et al (1993) The SCID-hu mouse as a model for HIV-1 infection. Nature 363(6431):732–736

    Article  CAS  PubMed  Google Scholar 

  7. Honeycutt JB, Wahl A, Archin N, Choudhary S, Margolis D, Garcia JV (2013) HIV-1 infection, response to treatment and establishment of viral latency in a novel humanized T cell-only mouse (TOM) model. Retrovirology 10:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA et al (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12(11):1316–1322

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N et al (2010) A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 115(8):1534–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vatakis DN, Koya RC, Nixon CC, Wei L, Kim SG, Avancena P et al (2011) Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc Natl Acad Sci U S A 108(51):E1408–E1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y et al (2007) Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109(1):212–218

    Article  CAS  PubMed  Google Scholar 

  12. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−gamma c−/− (RAG-hu) mouse model. Retrovirology 3:76

    Article  PubMed  PubMed Central  Google Scholar 

  13. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107

    Article  CAS  PubMed  Google Scholar 

  14. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM (1988) Infection of the SCID-hu mouse by HIV-1. Science 242(4886):1684–1686

    Article  CAS  PubMed  Google Scholar 

  15. Kaneshima H, Shih CC, Namikawa R, Rabin L, Outzen H, Machado SG et al (1991) Human immunodeficiency virus infection of human lymph nodes in the SCID-hu mouse. Proc Natl Acad Sci U S A 88(10):4523–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonyhadi ML, Rabin L, Salimi S, Brown DA, Kosek J, McCune JM et al (1993) HIV induces thymus depletion in vivo. Nature 363(6431):728–732

    Article  CAS  PubMed  Google Scholar 

  17. Stanley SK, McCune JM, Kaneshima H, Justement JS, Sullivan M, Boone E et al (1993) Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J Exp Med 178(4):1151–1163

    Article  CAS  PubMed  Google Scholar 

  18. Berkowitz RD, Alexander S, Bare C, Linquist-Stepps V, Bogan M, Moreno ME et al (1998) CCR5- and CXCR4- utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J Virol 72(12):10108–10117

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jenkins M, Hanley MB, Moreno MB, Wieder E, McCune JM (1998) Human immunodeficiency virus-1 infection interrupts thymopoiesis and multilineage hematopoiesis in vivo. Blood 91(8):2672–2678

    CAS  PubMed  Google Scholar 

  20. Jamieson BD, Pang S, Aldrovandi GM, Zha J, Zack JA (1995) vivo pathogenic properties of two clonal human immunodeficiency virus type 1 isolates. J Virol 69(10):6259–6264

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zack JA (1995) The role of the cell cycle in HIV-1 infection. Adv Exp Med Biol 374:27–31

    Article  CAS  PubMed  Google Scholar 

  22. Aldrovandi GM, Zack JA (1996) Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. J Virol 70(3):1505–1511

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jamieson BD, Uittenbogaart CH, Schmid I, Zack JA (1997) High viral burden and rapid CD4+ cell depletion in human immunodeficiency virus type 1-infected SCID-hu mice suggest direct viral killing of thymocytes in vivo. J Virol 71(11):8245–8253

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitchen SG, Zack JA (1997) CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J Virol 71(9):6928–6934

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Withers-Ward ES, Amado RG, Koka PS, Jamieson BD, Kaplan AH, Chen IS et al (1997) Transient renewal of thymopoiesis in HIV-infected human thymic implants following antiviral therapy. Nat Med 3(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  26. Jamieson BD, Zack JA (1998) vivo pathogenesis of a human immunodeficiency virus type 1 reporter virus. J Virol 72(8):6520–6526

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Amado RG, Jamieson BD, Cortado R, Cole SW, Zack JA (1999) Reconstitution of human thymic implants is limited by human immunodeficiency virus breakthrough during antiretroviral therapy. J Virol 73(8):6361–6369

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK et al (2008) Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 5(1):e16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F et al (2010) Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS One 5(1):e8829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E et al (2011) One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol 85(15):7582–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olesen R, Swanson MD, Kovarova M, Nochi T, Chateau M, Honeycutt JB et al (2016) ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions. J Clin Invest 126(3):892–904

    Article  PubMed  PubMed Central  Google Scholar 

  32. Veselinovic M, Neff CP, Mulder LR, Akkina R (2012) Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology 432(2):505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veselinovic M, Yang KH, LeCureux J, Sykes C, Remling-Mulder L, Kashuba AD et al (2014) HIV pre-exposure prophylaxis: mucosal tissue drug distribution of RT inhibitor Tenofovir and entry inhibitor Maraviroc in a humanized mouse model. Virology 464-465:253–263

    Article  CAS  PubMed  Google Scholar 

  34. Veselinovic M, Yang KH, Sykes C, Remling-Mulder L, Kashuba AD, Akkina R (2016) Mucosal tissue pharmacokinetics of the integrase inhibitor raltegravir in a humanized mouse model: implications for HIV pre-exposure prophylaxis. Virology 489:173–178

    Article  CAS  PubMed  Google Scholar 

  35. Wahl A, Swanson MD, Nochi T, Olesen R, Denton PW, Chateau M et al (2012) Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog 8(6):e1002732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL et al (2012) Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS 26(17):2135–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D (2012) Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481(7379):81–84

    Article  CAS  Google Scholar 

  38. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS et al (2014) Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 20(3):296–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S et al (2012) HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492(7427):118–122

    Article  CAS  PubMed  Google Scholar 

  40. Horwitz JA, Halper-Stromberg A, Mouquet H, Gitlin AD, Tretiakova A, Eisenreich TR et al (2013) HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice. Proc Natl Acad Sci U S A 110(41):16538–16543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halper-Stromberg A, CL L, Klein F, Horwitz JA, Bournazos S, Nogueira L et al (2014) Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158(5):989–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr, Buckley N et al (2015) Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522(7557):487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freund NT, Horwitz JA, Nogueira L, Sievers SA, Scharf L, Scheid JF et al (2015) A new glycan-dependent CD4-binding site neutralizing antibody exerts pressure on HIV-1 in vivo. PLoS Pathog 11(10):e1005238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Brooks DG, Kitchen SG, Kitchen CM, Scripture-Adams DD, Zack JA (2001) Generation of HIV latency during thymopoiesis. Nat Med 7(4):459–464

    Article  CAS  PubMed  Google Scholar 

  45. Brooks DG, Hamer DH, Arlen PA, Gao L, Bristol G, Kitchen CM et al (2003) Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19(3):413–423

    Article  CAS  PubMed  Google Scholar 

  46. Choudhary SK, Archin NM, Cheema M, Dahl NP, Garcia JV, Margolis DM (2012) Latent HIV-1 infection of resting CD4(+) T cells in the humanized Rag2(−)/(−) gammac(−)/(−) mouse. J Virol 86(1):114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD et al (2012) Generation of HIV latency in humanized BLT mice. J Virol 86(1):630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R et al (2012) HIV latency in the humanized BLT mouse. J Virol 86(1):339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kovochich M, Marsden MD, Zack JA (2011) Activation of latent HIV using drug-loaded nanoparticles. PLoS One 6(4):e18270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, Snyder OD et al (2014) Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog 10(1):e1003872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Myburgh R, Ivic S, Pepper MS, Gers-Huber G, Li D, Audige A et al (2015) Lentivector knockdown of CCR5 in hematopoietic stem and progenitor cells confers functional and persistent HIV-1 resistance in humanized mice. J Virol 89(13):6761–6772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shimizu S, Ringpis GE, Marsden MD, Cortado RV, Wilhalme HM, Elashoff D et al (2015) RNAi-Mediated CCR5 Knockdown Provides HIV-1 Resistance to Memory T Cells in Humanized BLT Mice. Mol Ther Nucleic Acids 4:e227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kitchen SG, Bennett M, Galic Z, Kim J, Xu Q, Young A et al (2009) Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice. PLoS One 4(12):e8208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kitchen SG, Levin BR, Bristol G, Rezek V, Kim S, Aguilera-Sandoval C et al (2012) In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog 8(4):e1002649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhen A, Kamata M, Rezek V, Rick J, Levin B, Kasparian S et al (2015) HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells. Mol Ther 23(8):1358–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nixon CC, Vatakis DN, Reichelderfer SN, Dixit D, Kim SG, Uittenbogaart CH et al (2013) HIV-1 infection of hematopoietic progenitor cells in vivo in humanized mice. Blood 122(13):2195–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carter CC, Onafuwa-Nuga A, McNamara LA (2010) Riddell Jt, Bixby D, Savona MR, et al. HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med 16(4):446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carter CC, McNamara LA, Onafuwa-Nuga A, Shackleton M, Riddell JT, Bixby D et al (2011) HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. Cell Host Microbe 9(3):223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hellmuth J, Milanini B, Valcour V (2014) Interactions between ageing and NeuroAIDS. Curr Opin HIV AIDS 9(6):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sagar V, Pilakka-Kanthikeel S, Pottathil R, Saxena SK, Nair M (2014) Towards nanomedicines for neuroAIDS. Rev Med Virol 24(2):103–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E et al (2011) Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci 31(9):3148–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Puligujja P, Arainga M, Dash P, Palandri D, Mosley RL, Gorantla S et al (2015) Pharmacodynamics of folic acid receptor targeted antiretroviral nanotherapy in HIV-1-infected humanized mice. Antivir Res 120:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boska MD, Dash PK, Knibbe J, Epstein AA, Akhter SP, Fields N et al (2014) Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Mol Neurodegener 9:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cabral GA (2006) Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 1(3):280–295

    Article  PubMed  Google Scholar 

  65. Dash S, Balasubramaniam M, Villalta F, Dash C, Pandhare J (2015) Impact of cocaine abuse on HIV pathogenesis. Front Microbiol 6:1111

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kapadia F, Cook JA, Cohen MH, Sohler N, Kovacs A, Greenblatt RM et al (2005) The relationship between non-injection drug use behaviors on progression to AIDS and death in a cohort of HIV seropositive women in the era of highly active antiretroviral therapy use. Addiction 100(7):990–1002

    Article  PubMed  PubMed Central  Google Scholar 

  67. Baldwin GC, Roth MD, Tashkin DP (1998) Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. J Neuroimmunol 83(1–2):133–138

    Article  CAS  PubMed  Google Scholar 

  68. Roth MD, Whittaker KM, Choi R, Tashkin DP, Baldwin GC (2005) Cocaine and sigma-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J Leukoc Biol 78(6):1198–1203

    Article  CAS  PubMed  Google Scholar 

  69. Kim SG, Jung JB, Dixit D, Rovner R Jr, Zack JA, Baldwin GC et al (2013) Cocaine exposure enhances permissiveness of quiescent T cells to HIV infection. J Leukoc Biol 94(4):835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M, Smith KD et al (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci U S A 107(35):15589–15594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG et al (2010) A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 8(4):369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Firoz Mian M, Pek EA, Chenoweth MJ, Ashkar AA (2011) Humanized mice are susceptible to Salmonella typhi infection. Cell Mol Immunol 8(1):83–87

    Article  CAS  PubMed  Google Scholar 

  73. Mocarski ES, Bonyhadi M, Salimi S, McCune JM, Kaneshima H (1993) Human cytomegalovirus in a SCID-hu mouse: thymic epithelial cells are prominent targets of viral replication. Proc Natl Acad Sci U S A 90(1):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kern ER, Hartline CB, Rybak RJ, Drach JC, Townsend LB, Biron KK et al (2004) Activities of benzimidazole D- and L-ribonucleosides in animal models of cytomegalovirus infections. Antimicrob Agents Chemother 48(5):1749–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Crawford LB, Streblow DN, Hakki M, Nelson JA, Caposio P (2015) Humanized mouse models of human cytomegalovirus infection. Curr Opin Virol 13:86–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB et al (2010) Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8(3):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fujiwara S, Imadome K, Takei M (2015) Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med 47:e135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Islas-Ohlmayer M, Padgett-Thomas A, Domiati-Saad R, Melkus MW, Cravens PD, Martin Mdel P (2004) Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein-Barr virus. J Virol 78:13891–13900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Seto E, Moosmann A, Gromminger S, Walz N, Grundhoff A, Hammerschmidt W (2010) Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 6:e1001063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJA (2013) cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87:5437–5446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C (2012) EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 122:1487–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y (2012) An Epstein-Barr virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol 86:7976–7987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuwana Y, Takei M, Yajima M, Imadome K, Inomata H, Shiozaki M (2011) Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS One 6:e26630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura HT (2009) cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200:1611–1615

    Article  CAS  PubMed  Google Scholar 

  85. Leung CS, Maurer MA, Meixlsperger S, Lippmann A, Cheong C, Zuo J, Robust T (2013) Cell stimulation by Epstein-Barr virus-transformed B cells after antigen targeting to DEC-205. Blood 121:1584–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Imadome K, Yajima M, Arai A, Nakazawa A, Kawano F, Ichikawa S et al (2011) Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog 7(10):e1002326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heuts F, Rottenberg ME, Salamon D, Rasul E, Adori M, Klein GT (2014) Cells modulate Epstein-Barr virus latency phenotypes during infection of humanized mice. J Virol 88:3235–3245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mota J, Rico-Hesse R (2009) Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J Virol 83(17):8638–8645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R (2012) Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol 86(14):7637–7649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jaiswal S, Pazoles P, Woda M, Shultz LD, Greiner DL, Brehm MA et al (2012) Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice. Immunology 136(3):334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Frias-Staheli N, Dorner M, Marukian S, Billerbeck E, Labitt RN, Rice CM et al (2014) Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing. J Virol 88(4):2205–2218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Murphy, K (2012) Janeway's Immunobiology. 8th ed. Garland Science. New York, NY, USA

    Google Scholar 

  93. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–560

    Article  CAS  PubMed  Google Scholar 

  94. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–803

    Article  CAS  PubMed  Google Scholar 

  95. Spiegel S, Cuvillier O, Edsall L, Kohama T, Menzeleev R, Olivera A et al (1998) Roles of sphingosine-1-phosphate in cell growth, differentiation, and death. Biochemistry (Mosc) 63(1):69–73

    CAS  Google Scholar 

  96. Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z et al (1998) Sphingosine-1-phosphate in cell growth and cell death. Ann N Y Acad Sci 845:11–18

    Article  CAS  PubMed  Google Scholar 

  97. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22(1):50–60

    Article  CAS  PubMed  Google Scholar 

  98. Oskeritzian CA, Hait NC, Wedman P, Chumanevich A, Kolawole EM, Price MM et al (2015) The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 135(4):1008–18.e1

    Article  CAS  PubMed  Google Scholar 

  99. Oskeritzian CA, Milstien S, Spiegel S (2007) Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. Pharmacol Ther 115(3):390–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Snider AJ (2013) Sphingosine kinase and sphingosine-1-phosphate: regulators in autoimmune and inflammatory disease. Int J Clin Rheumtol 8(4)

    Google Scholar 

  101. Sic H, Kraus H, Madl J, Flittner KA, von Munchow AL, Pieper K et al (2014) Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis. J Allergy Clin Immunol 134(2):420–428

    Article  CAS  PubMed  Google Scholar 

  102. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972):355–360

    Article  CAS  PubMed  Google Scholar 

  103. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    Article  CAS  PubMed  Google Scholar 

  104. Spiegel S, English D, Milstien S (2002) Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol 12(5):236–242

    Article  CAS  PubMed  Google Scholar 

  105. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11(6):403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vatakis DN, Arumugam B, Kim SG, Bristol G, Yang O, Zack JA (2013) Introduction of exogenous T-cell receptors into human hematopoietic progenitors results in exclusion of endogenous T-cell receptor expression. Mol Ther 21(5):1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McCracken MN, Vatakis DN, Dixit D, McLaughlin J, Zack JA, Witte ON (2015) Noninvasive detection of tumor-infiltrating T cells by PET reporter imaging. J Clin Invest 125(5):1815–1826

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants, R21DA031036 (DNV), R21 AI106472 (DNV), and T32HL086345 (RSR). The authors report no conflicts.

Conflict of interest The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Nikolaos Vatakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Resop, R.S., Kim, I.J., Nguyen, H., Vatakis, D.N. (2017). Clinical Relevance of Humanized Mice. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_22

Download citation

Publish with us

Policies and ethics