Skip to main content

NeuroAIDS: A Review of Gene Expression in Neurons, Astrocytes, and Oligodendrocytes

  • Chapter
  • First Online:
  • 810 Accesses

Abstract

Modern biotechnology techniques with focus on RNA and protein gene expression have fundamentally altered our view of the pathogenesis of neurological diseases, in general, and HIV-associated neurocognitive disorders (HAND), in particular. Extensive analysis of gene expression enables scientists to assess the simultaneous expression modes of enormous groups of genes. The alterations in adjustment and expression modes of these genes in relation to pathophysiology of NeuroAIDS and HAND provide us with crucial clues into molecular mechanisms of development of AIDS invasion to and infection of human nervous system and how such a vast process affects different tissues within the peripheral immune system and the nervous system. The present chapter focuses on the latest findings in gene expression patterns during pathophysiology of HAND with emphasis on their potential application for treatment of these patients. Specifically, through this chapter we concentrate on the gene expression by the cells within the central nervous system (CNS), neurons, astrocytes, and oligodendrocytes during pathogenesis of HAND.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haddow LJ, Cartledge JD, Manji H (2013) HIV and the brain: from AIDS to old age. Clin Med (Lond) 13(Suppl 6):s24–s28

    Article  Google Scholar 

  2. Brew BJ, Chan P (2014) Update on HIV dementia and HIV-associated neurocognitive disorders. Curr Neurol Neurosci Rep 14(8):468

    Article  PubMed  Google Scholar 

  3. Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neuro-Oncol 8(Suppl 2):115–121

    CAS  Google Scholar 

  4. Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, Commins D, Morgello S, Grant I, Horvath S (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Med Genet 6:4. doi:10.1186/1755-8794-6-4

    CAS  Google Scholar 

  5. Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS (2010) MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 1:e77. doi:10.1038/cddis.2010.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP (2014) Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener 9:26. doi:10.1186/1750-1326-9-26

    Article  PubMed  PubMed Central  Google Scholar 

  7. Siangphoe U, Archer KJ (2015) Gene expression in HIV-associated neurocognitive disorders: a meta-analysis. J Acquir Immune Defic Syndr 70(5):479–488

    Article  CAS  PubMed  Google Scholar 

  8. Jing T, Wu L, Borgmann K, Surendran S, Ghorpade A et al (2010) Soluble factors from IL-1β-stimulated astrocytes activate NR1a/NR2B receptors: implications for HIV-1-induced neurodegeneration. Biochem Biophys Res Commun 402:241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13:1–22

    Article  CAS  PubMed  Google Scholar 

  10. Boven LA, Vergnolle N, Henry SD, Silva C, Imai Y et al (2003) Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J Immunol 170:2638–2646

    Article  CAS  PubMed  Google Scholar 

  11. Dou H, Morehead J, Bradley J, Gorantla S, Ellison B et al (2006) Neuropathologic and neuroinflammatory activities of HIV-1-infected human astrocytes in murine brain. Glia 54:81–93

    Article  PubMed  Google Scholar 

  12. El-Hage N, Podhaizer EM, Sturgill J, Hauser KF (2011) Toll-like receptor expression and activation in astroglia: differential regulation by HIV-1 tat, gp120, and morphine. Immunol Investig 40(5):498–522

    Article  CAS  Google Scholar 

  13. Patton HK, Zhou ZH, Bubien JK, Benveniste EN, Benos DJ (2000) gp120-induced alterations of human astrocyte function: Na(+)/H(+) exchange, K(+) conductance, and glutamate flux. Am J Phys Cell Phys 279(3):C700–C708

    CAS  Google Scholar 

  14. Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, Rothstein JD, Volsky DJ (2003) Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology 312(1):60–73

    Article  CAS  PubMed  Google Scholar 

  15. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    Article  CAS  PubMed  Google Scholar 

  16. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  CAS  PubMed  Google Scholar 

  17. Verkhratsky A, Rodríguez JJ, Parpura V (2013) Astroglia in neurological diseases. Future Neurol 8:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou BY, Liu Y, Bo K, Xiao Y, He JJ (2004) Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci 27:296–305

    Article  CAS  PubMed  Google Scholar 

  19. Gelman BB (2015) Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and Neurodegeneration reconsidered. Curr HIV/AIDS Rep 12(2):272–279

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sofroniew MV, Vinters HV (2010 Jan) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  21. Yang Z, Wang KK (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 38(6):364–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deshpande M, Zheng J, Borgmann K, Persidsky R, Wu L, Schellpeper C, Ghorpade A (2005) Role of activated astrocytes in neuronal damage: potential links to HIV-1-associated dementia. Neurotox Res 7(3):183–192

    Article  CAS  PubMed  Google Scholar 

  23. Reddy PV, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M et al (2012) HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 61:807–814

    Article  CAS  PubMed  Google Scholar 

  24. Shah A, Verma AS, Patel KH, Noel R, Rivera-Amill V et al (2011) HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One 6:e21261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-κB pathway and can be silenced by gp120-specific siRNA. J Neuroinflammation 7:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shah A, Singh DP, Buch S, Kumar A (2011) HIV-1 envelope protein gp120 up regulates CCL5 production in astrocytes which can be circumvented by inhibitors of NF-κB pathway. Biochem Biophys Res Commun 414:112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borjabad A, Brooks AI, Volsky DJ (2010) Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 5(1):44–62

    Article  PubMed  Google Scholar 

  28. Jayadev S, Yun B, Nguyen H, Yokoo H, Morrison RS, Garden GA (2007 Dec) The glial response to CNS HIV infection includes p53 activation and increased expression of p53 target genes. J Neuroimmune Pharmacol 2(4):359–370

    Article  PubMed  Google Scholar 

  29. Atluri VS, Kanthikeel SP, Reddy PV, Yndart A, Nair MP (2013) Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND). PLoS One 8(4):e61399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Albright AV, Strizki J, Harouse JM, Lavi E, O'Connor M, González-Scarano F (1996) HIV-1 infection of cultured human adult oligodendrocytes. Virology 217(1):211–219

    Article  CAS  PubMed  Google Scholar 

  31. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R et al (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585

    Article  CAS  PubMed  Google Scholar 

  32. Nuovo GJ, Becker J, Burk MW, Margiotta M, Fuhrer J, Steigbigel RT (1994) In situ detection of PCR-amplified HIV-1 nucleic acids in lymph nodes and peripheral blood in patients with asymptomatic HIV-1 infection and advanced-stage AIDS. J Acquir Immune Defic Syndr 7:916–923

    CAS  PubMed  Google Scholar 

  33. Ensoli F, Cafaro A, Fiorelli V, Vannelli B, Ensoli B, Thiele CJ (1995) HIV-1 infection of primary human neuroblasts. Virology 210:221–225

    Article  CAS  PubMed  Google Scholar 

  34. Esiri MM, Morris CS, Millard PR (1991) Fate of oligodendrocytes in HIV-1 infection. AIDS 5(9):1081–1088

    Article  CAS  PubMed  Google Scholar 

  35. Lackner P, Kuenz B, Reindl M, Morandell M, Berger T, Schmutzhard E, Eggers C (2010) Antibodies to myelin oligodendrocyte glycoprotein in HIV-1 associated neurocognitive disorder: a cross-sectional cohort study. J Neuroinflammation 7:79

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chaudhuri AD, Yelamanchili SV, Fox HS (2013) MicroRNA-142 reduces monoamine oxidase a expression and activity in neuronal cells by downregulating SIRT1. PLoS One 8(11):e79579

    Article  CAS  PubMed  Google Scholar 

  37. Zou S, Fuss B, Fitting S, Hahn YK, Hauser KF, Knapp PE (2015) Oligodendrocytes are targets of HIV-1 Tat: NMDA and AMPA receptor-mediated effects on survival and development. J Neurosci 35(32):11384–11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Minagar MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

McGee, J., Minagar, A. (2017). NeuroAIDS: A Review of Gene Expression in Neurons, Astrocytes, and Oligodendrocytes. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_20

Download citation

Publish with us

Policies and ethics