Skip to main content

Neurocognition in Viral Suppressed HIV-Infected Children

  • Chapter
  • First Online:
Global Virology II - HIV and NeuroAIDS

Abstract

In the era of combination antiretroviral therapy (ART), children and adolescents with perinatally acquired HIV (PHIV) infection remain at risk for subtle to severe neurocognitive deficits. Early ART initiation in infancy may mitigate global or selective deficits, likely due to viral suppression; however, youth with PHIV who initiate ART later in childhood are less likely to demonstrate normal neurocognition after ART initiation. The presence of neurocognitive deficits and/or the lack of neurocognitive improvement after ART initiation in older children may be due to damage associated with prior immunosuppression, intermittent periods of HIV replication and neuroinflammation during formative years, and/or ART-associated neurotoxicities. The literature supports the need for early ART initiation during infancy, not only for survival benefit but also for optimizing short-term neurodevelopmental outcomes. However, prospective, longitudinal studies remain necessary to determine the long-term neurocognitive outcomes among children with variably timed viral suppression as well as the functional impact of deficits and potential resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel K, Ming X, Williams PL, Robertson KR, Oleske JM, Seage GR 3rd, et al (2009) Impact of HAART and CNS-penetrating antiretroviral regimens on HIV encephalopathy among perinatally infected children and adolescents. AIDS 23(14):1893–1901.

    Google Scholar 

  2. Paramesparan Y, Garvey LJ, Ashby J, Foster CJ, Fidler S, Winston A (2010) High rates of asymptomatic neurocognitive impairment in vertically acquired HIV-1-infected adolescents surviving to adulthood. J Acquir Immune Defic Syndr 55(1):134–136

    Article  PubMed  Google Scholar 

  3. Le Doare K, Bland R, Newell ML (2012) Neurodevelopment in children born to HIV-infected mothers by infection and treatment status. Pediatrics 130(5):e1326–e1344

    Article  PubMed  Google Scholar 

  4. Abubakar A, Van Baar A, Van de Vijver FJ, Holding P, Newton CR (2008) Paediatric HIV and neurodevelopment in sub-Saharan Africa: a systematic review. Tropical Med Int Health 13(7):880–887

    Article  Google Scholar 

  5. Ettenhofer ML, Foley J, Castellon SA, Hinkin CH (2010) Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS. Neurology 74(15):1217–1222

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malee K, Williams PL, Montepiedra G, Nichols S, Sirois PA, Storm D et al (2009) The role of cognitive functioning in medication adherence of children and adolescents with HIV infection. J Pediatr Psychol 34(2):164–175

    Article  PubMed  Google Scholar 

  7. Garvie PA, Zeldow B, Malee K, Nichols SL, Smith RA, Wilkins ML et al (2014) Discordance of cognitive and academic achievement outcomes in youth with perinatal HIV exposure. Pediatr Infect Dis J 33(9):e232–e238

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nichols SL, Montepiedra G, Farley JJ, Sirois PA, Malee K, Kammerer B et al (2012) Cognitive, academic, and behavioral correlates of medication adherence in children and adolescents with perinatally acquired HIV infection. J Dev Behav Pediatr 33(4):298–308

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crowell CS, Malee KM, Yogev R, Muller WJ (2014) Neurologic disease in HIV-infected children and the impact of combination antiretroviral therapy. Rev Med Virol 24(5):316–331

    Article  CAS  PubMed  Google Scholar 

  10. Foster C, Fidler S (2010) Optimizing antiretroviral therapy in adolescents with perinatally acquired HIV-1 infection. Expert Rev Anti-Infect Ther 8(12):1403–1416

    Article  CAS  PubMed  Google Scholar 

  11. Van Rie A, Harrington PR, Dow A, Robertson K (2007) Neurologic and neurodevelopmental manifestations of pediatric HIV/AIDS: a global perspective. Eur J Paediatr Neurol Off J Eur Paediatr Neurol Soc 11(1):1–9

    Google Scholar 

  12. Kapetanovic S, Griner R, Zeldow B, Nichols S, Leister E, Gelbard HA et al (2014) Biomarkers and neurodevelopment in perinatally HIV-infected or exposed youth: a structural equation model analysis. AIDS 28(3):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bagenda D, Nassali A, Kalyesubula I, Sherman B, Drotar D, Boivin MJ et al (2006) Health, neurologic, and cognitive status of HIV-infected, long-surviving, and antiretroviral-naive Ugandan children. Pediatrics 117(3):729–740

    Article  PubMed  Google Scholar 

  14. Kandawasvika GQ, Kuona P, Chandiwana P, Masanganise M, Gumbo FZ, Mapingure MP et al (2015) The burden and predictors of cognitive impairment among 6- to 8-year-old children infected and uninfected with HIV from Harare, Zimbabwe: a cross-sectional study. Child Neuropsychol J Normal Abnormal Dev Childhood Adolesc 21(1):106–120

    CAS  Google Scholar 

  15. Puthanakit T, Aurpibul L, Louthrenoo O, Tapanya P, Nadsasarn R, Insee-ard S et al (2010) Poor cognitive functioning of school-aged children in Thailand with perinatally acquired HIV infection taking antiretroviral therapy. AIDS Patient Care & Stds 24(3):141–146

    Article  Google Scholar 

  16. Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT (2009) Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci 21(6):1106–1115

    Article  PubMed  Google Scholar 

  17. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hochhauser CJ, Gaur S, Marone R, Lewis M (2008) The impact of environmental risk factors on HIV-associated cognitive decline in children. AIDS Care 20(6):692–699

    Article  CAS  PubMed  Google Scholar 

  19. Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM et al (2015) Family income, parental education and brain structure in children and adolescents. Nat Neurosci 18(5):773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13(11):976–986

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pratt RD, Nichols S, McKinney N, Kwok S, Dankner WM, Spector SA (1996) Virologic markers of human immunodeficiency virus type 1 in cerebrospinal fluid of infected children. J Infect Dis 174(2):288–293

    Article  CAS  PubMed  Google Scholar 

  22. Sei S, Stewart SK, Farley M, Mueller BU, Lane JR, Robb ML et al (1996) Evaluation of human immunodeficiency virus (HIV) type 1 RNA levels in cerebrospinal fluid and viral resistance to zidovudine in children with HIV encephalopathy. J Infect Dis 174(6):1200–1206

    Article  CAS  PubMed  Google Scholar 

  23. Cooper ER, Hanson C, Diaz C, Mendez H, Abboud R, Nugent R et al (1998) Encephalopathy and progression of human immunodeficiency virus disease in a cohort of children with perinatally acquired human immunodeficiency virus infection. Women and Infants Transmission Study Group. J Pediatr 132(5):808–812

    Article  CAS  PubMed  Google Scholar 

  24. Epstein LG, Sharer LR, Oleske JM, Connor EM, Goudsmit J, Bagdon L et al (1986) Neurologic manifestations of human immunodeficiency virus infection in children. Pediatrics 78(4):678–687

    CAS  PubMed  Google Scholar 

  25. Smith R, Malee K, Charurat M, Magder L, Mellins C, Macmillan C et al (2000) Timing of perinatal human immunodeficiency virus type 1 infection and rate of neurodevelopment. The Women and Infant Transmission Study Group. Pediatr Infect Dis J 19(9):862–871

    Article  CAS  PubMed  Google Scholar 

  26. Wood SM, Shah SS, Steenhoff AP, Rutstein RM (2009) The impact of AIDS diagnoses on long-term neurocognitive and psychiatric outcomes of surviving adolescents with perinatally acquired HIV. AIDS 23(14):1859–1865

    Article  PubMed  Google Scholar 

  27. Sanchez-Ramon S, Resino S, Bellon Cano JM, Ramos JT, Gurbindo D, Munoz-Fernandez A (2003) Neuroprotective effects of early antiretrovirals in vertical HIV infection. Pediatr Neurol 29(3):218–221

    Article  PubMed  Google Scholar 

  28. Lazarus JR, Rutstein RM, Lowenthal ED (2015) Treatment initiation factors and cognitive outcome in youth with perinatally acquired HIV infection. HIV Med 16(6):355–361

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cohen S, Ter Stege JA, Geurtsen GJ, Scherpbier HJ, Kuijpers TW, Reiss P et al (2015) Poorer cognitive performance in perinatally HIV-infected children versus healthy socioeconomically matched controls. Clin Infect Dis 60(7):1111–1119

    Article  PubMed  Google Scholar 

  30. Nozyce ML, Lee SS, Wiznia A, Nachman S, Mofenson LM, Smith ME et al (2006) A behavioral and cognitive profile of clinically stable HIV-infected children. Pediatrics 117(3):763–770

    Article  PubMed  Google Scholar 

  31. Shanbhag MC, Rutstein RM, Zaoutis T, Zhao H, Chao D, Radcliffe J (2005) Neurocognitive functioning in pediatric human immunodeficiency virus infection: effects of combined therapy. Arch Pediatr Adolesc Med 159(7):651–656

    Article  PubMed  Google Scholar 

  32. Jeremy RJ, Kim S, Nozyce M, Nachman S, McIntosh K, Pelton SI et al (2005) Neuropsychological functioning and viral load in stable antiretroviral therapy-experienced HIV-infected children. Pediatrics 115(2):380–387

    Article  PubMed  Google Scholar 

  33. Lindsey JC, Malee KM, Brouwers P, Hughes MD (2007) Neurodevelopmental functioning in HIV-infected infants and young children before and after the introduction of protease inhibitor-based highly active antiretroviral therapy. Pediatrics 119(3):e681–e693

    Google Scholar 

  34. Puthanakit T, Ananworanich J, Vonthanak S, Kosalaraksa P, Hansudewechakul R, van der Lugt J et al (2013) Cognitive function and neurodevelopmental outcomes in HIV-infected children older than 1 year of age randomized to early versus deferred antiretroviral therapy: the PREDICT neurodevelopmental study. Pediatr Infect Dis J 32(5):501–508

    Article  PubMed  PubMed Central  Google Scholar 

  35. Van Rie A, Dow A, Mupuala A, Stewart P (2009) Neurodevelopmental trajectory of HIV-infected children accessing care in Kinshasa, Democratic Republic of Congo. J Acquir Immune Defic Syndr 52(5):636–642

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brahmbhatt H, Boivin M, Ssempijja V, Kigozi G, Kagaayi J, Serwadda D et al (2014) Neurodevelopmental benefits of antiretroviral therapy in Ugandan children aged 0-6 years with HIV. J Acquir Immune Defic Syndr 67(3):316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lowick S, Sawry S, Meyers T (2012) Neurodevelopmental delay among HIV-infected preschool children receiving antiretroviral therapy and healthy preschool children in Soweto, South Africa. Psychol Health Med 17(5):599–610

    Article  PubMed  Google Scholar 

  38. Whitehead N, Potterton J, Coovadia A (2014) The neurodevelopment of HIV-infected infants on HAART compared to HIV-exposed but uninfected infants. AIDS Care 26(4):497–504

    Article  PubMed  Google Scholar 

  39. Lindsey JC, Hughes MD, McKinney RE, Cowles MK, Englund JA, Baker CJ et al (2000) Treatment-mediated changes in human immunodeficiency virus (HIV) type 1 RNA and CD4 cell counts as predictors of weight growth failure, cognitive decline, and survival in HIV-infected children. J Infect Dis 182(5):1385–1393

    Article  CAS  PubMed  Google Scholar 

  40. Laughton B, Cornell M, Grove D, Kidd M, Springer PE, Dobbels E et al (2012) Early antiretroviral therapy improves neurodevelopmental outcomes in infants. AIDS 26(13):1685–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ackermann C, Andronikou S, Laughton B, Kidd M, Dobbels E, Innes S et al (2014) White matter signal abnormalities in children with suspected HIV-related neurologic disease on early combination antiretroviral therapy. Pediatr Infect Dis J 33(8):e207–e212

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crowell CS, Huo Y, Tassiopoulos K, Malee KM, Yogev R, Hazra R et al (2015) Early viral suppression improves neurocognitive outcomes in HIV-infected children. AIDS 29(3):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Violari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA et al (2008) Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med 359(21):2233–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Persaud D, Luzuriaga K (2014) Absence of HIV-1 after treatment cessation in an infant. N Engl J Med 370(7):678

    Article  CAS  PubMed  Google Scholar 

  45. Brown TT, Jernigan TL (2012) Brain development during the preschool years. Neuropsychol Rev 22(4):313–333

    Article  PubMed  PubMed Central  Google Scholar 

  46. Underwood J, Robertson KR, Winston A (2014) Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS 29(3):253–261

    Article  Google Scholar 

  47. Koekkoek S, de Sonneville LM, Wolfs TF, Licht R, Geelen SP (2008) Neurocognitive function profile in HIV-infected school-age children. Eur J Paediatr Neurol 12(4):290–297

    Article  PubMed  Google Scholar 

  48. Llorente AM, Brouwers P, Leighty R, Malee K, Smith R, Harris L et al (2014) An analysis of select emerging executive skills in perinatally HIV-1-infected children. Appl Neuropsychol Child 3(1):10–25

    Article  PubMed  Google Scholar 

  49. Linn K, Fay A, Meddles K, Isbell S, Lin PN, Thair C et al (2015) HIV-related cognitive impairment of orphans in Myanmar with vertically transmitted HIV taking antiretroviral therapy. Pediatr Neurol 53(6):485–490. e1.

    Article  PubMed  Google Scholar 

  50. Haase VG, Nicolau NC, Viana VN, de Val Barreto G, Pinto JA (2014) Executive function and processing speed in Brazilian HIV-infected children and adolescents. Dementia & Neuropsychol 8(1):32–39

    Article  Google Scholar 

  51. Smith R, Chernoff M, Williams PL, Malee KM, Sirois PA, Kammerer B et al (2012) Impact of HIV severity on cognitive and adaptive functioning during childhood and adolescence. Pediatr Infect Dis J 31(6):592–598

    Article  PubMed  Google Scholar 

  52. Nachman S, Chernoff M, Williams P, Hodge J, Heston J, Gadow KD (2012) Human immunodeficiency virus disease severity, psychiatric symptoms, and functional outcomes in perinatally infected youth. Arch Pediatr Adolesc Med 166(6):528–535

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75(23):2087–2096.

    Google Scholar 

  54. Nichols SL, Brummel SS, Smith RA, Garvie PA, Hunter SJ, Malee KM et al (2015) Executive functioning in children and adolescents with perinatal HIV infection. Pediatr Infect Dis J 34(9):969–975

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nichols SL, Chernoff MC, Malee KM, Sirois PA, Williams PL, Figueroa V et al (2015) Learning and memory in children and adolescents with perinatal HIV infection and perinatal HIV exposure. Pediatr Infect Dis J 35(6):649–654

    Article  Google Scholar 

  56. Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67(5):728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masters MC, Ances BM (2014) Role of neuroimaging in HIV-associated neurocognitive disorders. Semin Neurol 34(1):89–102

    Article  PubMed  PubMed Central  Google Scholar 

  58. Banakar S, Thomas MA, Deveikis A, Watzl JQ, Hayes J, Keller MA (2008) Two-dimensional 1H MR spectroscopy of the brain in human immunodeficiency virus (HIV)-infected children. J Magn Reson Imaging 27(4):710–717

    Article  PubMed  Google Scholar 

  59. Keller MA, Venkatraman TN, Thomas MA, Deveikis A, Lopresti C, Hayes J et al (2006) Cerebral metabolites in HIV-infected children followed for 10 months with 1H-MRS. Neurology 66(6):874–879

    Article  CAS  PubMed  Google Scholar 

  60. Keller MA, Venkatraman TN, Thomas A, Deveikis A, LoPresti C, Hayes J et al (2004) Altered neurometabolite development in HIV-infected children: correlation with neuropsychological tests. Neurology 62(10):1810–1817

    Article  CAS  PubMed  Google Scholar 

  61. Prado PT, Escorsi-Rosset S, Cervi MC, Santos AC (2011) Image evaluation of HIV encephalopathy: a multimodal approach using quantitative MR techniques. Neuroradiology 53(11):899–908

    Article  PubMed  Google Scholar 

  62. Nagarajan R, Sarma MK, Thomas MA, Chang L, Natha U, Wright M et al (2012) Neuropsychological function and cerebral metabolites in HIV-infected youth. J Neuroimmune Pharmacol 7(4):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gabis L, Belman A, Huang W, Milazzo M, Nachman S (2006) Clinical and imaging study of human immunodeficiency virus-1-infected youth receiving highly active antiretroviral therapy: pilot study using magnetic resonance spectroscopy. J Child Neurol 21(6):486–490

    Article  PubMed  Google Scholar 

  64. Su T, Caan MW, Wit FW, Schouten J, Geurtsen GJ, Cole JH et al (2016) White matter structure alterations in HIV-1-infected men with sustained suppression of viraemia on treatment. AIDS 30(2):311–322

    Article  CAS  PubMed  Google Scholar 

  65. Hoare J, Fouche JP, Spottiswoode B, Donald K, Philipps N, Bezuidenhout H et al (2012) A diffusion tensor imaging and neurocognitive study of HIV-positive children who are HAART-naive “slow progressors”. J Neurovirol 18(3):205–212

    Article  PubMed  Google Scholar 

  66. Sarma MK, Nagarajan R, Keller MA, Kumar R, Nielsen-Saines K, Michalik DE et al (2014) Regional brain gray and white matter changes in perinatally HIV-infected adolescents. Neuroimage Clin 4:29–34

    Article  PubMed  Google Scholar 

  67. Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler DJ Jr, et al (2012) Neuroanatomical assessment of biological maturity. Curr Biol 22(18):1693–1698.

    Google Scholar 

  68. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101(21):8174–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jahanshad N, Couture MC, Prasitsuebsai W, Nir TM, Aurpibul L, Thompson PM et al (2015) Brain imaging and neurodevelopment in HIV-uninfected Thai children born to HIV-infected mothers. Pediatr Infect Dis J 34(9):e211–e216

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cohen S, Caan MW, Mutsaerts HJ, Scherpbier HJ, Kuijpers TW, Reiss P et al (2015) Cerebral injury in perinatally HIV-infected children compared to matched healthy controls. Neurology 86(1):19–27

    Article  PubMed  Google Scholar 

  71. Uban KA, Herting MM, Williams PL, Ajmera T, Gautam P, Huo Y et al (2015) White matter microstructure among youth with perinatally acquired HIV is associated with disease severity. AIDS 29(9):1035–1044

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG (2005) Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11(3):292–298

    Article  PubMed  PubMed Central  Google Scholar 

  73. Herting MM, Uban KA, Williams PL, Gautam P, Huo Y, Malee K et al (2015) Default mode connectivity in youth with perinatally acquired HIV. Medicine 94(37):e1417

    Article  PubMed  PubMed Central  Google Scholar 

  74. Caniglia EC, Cain LE, Justice A, Tate J, Logan R, Sabin C et al (2014) Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology 83(2):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  75. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K et al (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23(11):1359–1366

    Article  PubMed  PubMed Central  Google Scholar 

  76. Moren C, Noguera-Julian A, Garrabou G, Catalan M, Rovira N, Tobias E et al (2012) Mitochondrial evolution in HIV-infected children receiving first- or second-generation nucleoside analogues. J Acquir Immune Defic Syndr 60(2):111–116

    Article  CAS  PubMed  Google Scholar 

  77. Treisman GJ, Kaplin AI (2002) Neurologic and psychiatric complications of antiretroviral agents. AIDS 16(9):1201–1215

    Article  CAS  PubMed  Google Scholar 

  78. Saitoh A, Fletcher CV, Brundage R, Alvero C, Fenton T, Hsia K et al (2007) Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism. J Acquir Immune Defic Syndr 45(3):280–285

    CAS  PubMed  Google Scholar 

  79. Sailasuta N, Ross W, Ananworanich J, Chalermchai T, DeGruttola V, Lerdlum S et al (2012) Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. PLoS One 7(11):e49272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG et al (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 50(5):773–778

    Article  PubMed  Google Scholar 

  81. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A et al (2012) Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS 26(14):1765–1774

    Article  CAS  PubMed  Google Scholar 

  82. Valcour VG, Ananworanich J, Agsalda M, Sailasuta N, Chalermchai T, Schuetz A et al (2013) HIV DNA reservoir increases risk for cognitive disorders in cART-naive patients. PLoS One 8(7):e70164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sturdevant CB, Dow A, Jabara CB, Joseph SB, Schnell G, Takamune N et al (2012) Central nervous system compartmentalization of HIV-1 subtype C variants early and late in infection in young children. PLoS Pathog 8(12):e1003094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11(3):e1004720

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tamula MA, Wolters PL, Walsek C, Zeichner S, Civitello L (2003) Cognitive decline with immunologic and virologic stability in four children with human immunodeficiency virus disease. Pediatrics 112(3 Pt 1):679–684

    Article  PubMed  Google Scholar 

  86. Boivin MJ, Giordani B (2009) Neuropsychological assessment of African children: evidence for a universal brain/behavior omnibus within a coconstructivist paradigm. Prog Brain Res 178:113–135

    Article  PubMed  Google Scholar 

  87. Sternberg RJ, Grigorenko EL (2002) Dynamic testing: the nature and measurement of learning potential. Cambridge University Press, New York. Xi 218 pp

    Google Scholar 

  88. Martin SC, Wolters PL, Toledo-Tamula MA, Zeichner SL, Hazra R, Civitello L (2006) Cognitive functioning in school-aged children with vertically acquired HIV infection being treated with highly active antiretroviral therapy (HAART). Dev Neuropsychol 30(2):633–657

    Article  PubMed  Google Scholar 

  89. Hazra R, Jankelevich S, Mackall CL, Avila NA, Wolters P, Civitello L et al (2007) Immunologic, virologic, and neuropsychologic responses in human immunodeficiency virus-infected children receiving their first highly active antiretroviral therapy regimen. Viral Immunol 20(1):131–141

    Article  CAS  PubMed  Google Scholar 

  90. Cysique LA, Moffat K, Moore DM, Lane TA, Davies NW, Carr A et al (2013) HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One 8(4):e61738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E et al (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Valero IP, Baeza AG, Hernandez-Tamames JA, Monge S, Arnalich F, Arribas JR (2014) Cerebral volumes, neuronal integrity and brain inflammation measured by MRI in patients receiving PI monotherapy or triple therapy. J Int AIDS Soc 17(4 Suppl 3):19578

    PubMed  Google Scholar 

  93. Schweinsburg BC, Taylor MJ, Alhassoon OM, Gonzalez R, Brown GG, Ellis RJ et al (2005) Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol 11(4):356–364

    Article  CAS  PubMed  Google Scholar 

  94. Mohamed MA, Barker PB, Skolasky RL, Selnes OA, Moxley RT, Pomper MG et al (2010) Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study. Magn Reson Imaging 28(9):1251–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage 23(4):1336–1347

    Article  CAS  PubMed  Google Scholar 

  96. Paul RH, Ernst T, Brickman AM, Yiannoutsos CT, Tate DF, Cohen RA et al (2008) Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. J Int Neuropsychol Soc 14(5):725–733

    Article  PubMed  Google Scholar 

  97. Roc AC, Ances BM, Chawla S, Korczykowski M, Wolf RL, Kolson DL et al (2007) Detection of human immunodeficiency virus induced inflammation and oxidative stress in lenticular nuclei with magnetic resonance spectroscopy despite antiretroviral therapy. Arch Neurol 64(9):1249–1257

    Article  PubMed  Google Scholar 

  98. Ernst T, Jiang CS, Nakama H, Buchthal S, Chang L (2010) Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. J Magn Reson Imaging 32(5):1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia S. Crowell MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Crowell, C.S., Malee, K. (2017). Neurocognition in Viral Suppressed HIV-Infected Children. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_11

Download citation

Publish with us

Policies and ethics