Skip to main content

Volitional Control Research

  • Chapter
  • First Online:
Book cover Full Stride

Abstract

Technological advances in batteries, actuators, and electronic components have allowed the creation of durable and efficient lower extremity assistive devices. However, providing intuitive and safe control methods is critical to unlocking the capability of these devices, especially those intended to restore mobility for individuals with significant musculoskeletal impairments. Several approaches, ranging from noninvasive to highly invasive, have recently been proposed to help the user voluntarily control assistive devices across a broad range of activities. Most techniques require use of advanced algorithms capable of operating in real time to interpret sensor data (from the device) and/or biological signal data (from the patient). This chapter provides an overview of the diverse methods available for volitional control, highlighting their respective strengths and weaknesses. It is necessary to explore and embrace multiple approaches because no single approach is likely to suit the broad range of user needs and applications from prosthetic leg systems to powered exoskeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DBN:

Dynamic Bayesian network

DOF:

Degree of freedom

EMG:

Electromyographic

Hz:

Hertz

LIFEs:

Longitudinal intrafascicular arrays

TMR:

Targeted muscle reinnervation

References

  1. Basmajian B, de Luca C. Muscles alive: their functions revealed by electromyography. 5th ed.: Williams & Wilkins, 1985.

    Google Scholar 

  2. Williams TW. Control of powered upper extremity prostheses. In: Meier RH, Atkins DJ, editors. Functional restoration of adults and children with upper extremity amputation. New York: Demos Medical Publishing; 2004. p. 207–24.

    Google Scholar 

  3. Li G, et al. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng. 2010;18:185–92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hudgins B, et al. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng. 1993;40:82–94.

    Article  CAS  PubMed  Google Scholar 

  5. Hargrove L, et al. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle Reinnervation. In: Proceedings of the 35th International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan; 2013.

    Google Scholar 

  6. Kuiken T, et al. A comparison of direct control and pattern recognition control in Transhumeral TMR subjects. In: ISPO World Congress 2015, Lyon, France; 2015. p. 129.

    Google Scholar 

  7. Kuiken TA, et al. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int. 2004;28:245–53.

    CAS  Google Scholar 

  8. Zhou P, et al. Decoding a new neural-machine Interface for control of artificial limbs. J Neurophysiol. 2007;98:2974–82.

    Article  PubMed  Google Scholar 

  9. Marasco PD, et al. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain. 2009;132:1441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller LA, et al. Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series. Neural Syst Rehabil Eng (IEEE Transactions on [see also IEEE Trans. on Rehabilitation Engineering]). 2008;16:46–50.

    Article  Google Scholar 

  11. Lipschutz RDD. Methods for collecting myoelectric signals from individuals with lower llimb amputations. In: Proceedings of the 2011 Myelectric Controls/Powered Prosthetics Symposium. Fredericton, New Brunswick, Canada; 2011.

    Google Scholar 

  12. Lipschutz R, et al. Systems and methods of myoelectric prosthesis control. USA Patent, 2012.

    Google Scholar 

  13. Papaioannou G, et al. Assessment of amputee socket–stump–residual bone kinematics during strenuous activities using dynamic roentgen Stereogrammetric analysis. J Biomech. 2010;43:871–8.

    Article  CAS  PubMed  Google Scholar 

  14. de Luca C, et al. Filtering the surface EMG signal: movement artifact and baseline noise contamination. J Biomech. 2010;43:1573–9.

    Article  PubMed  Google Scholar 

  15. Basmajian J, De Luca C. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore: Williams and Wilkins; 1985.

    Google Scholar 

  16. Losier Y, Wilson A. Moving towards an open standard: the UNB prosthetic device communication protocol. In: International Society for Prosthetics & Orthotics (ISPO) World Congress, Leipzig, Germany; 2010.

    Google Scholar 

  17. Myers D, Moskowitz GD. Myoelectric pattern recognition for use in the volitional control of above-knee prostheses. IEEE Trans Syst Man Cybernet. 1981;11:296–302.

    Article  Google Scholar 

  18. Hillstrom H, Moskowitz GD. Robust intent recognition for prosthesis control. In: 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 1992. p. 1448–9.

    Google Scholar 

  19. Delis A, et al. Myoelectric knee angle estimation algorithms for control of active transfemoral leg prostheses. InTech; 2011.

    Google Scholar 

  20. Ha KH, et al. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng. 2011;58:144–51.

    Article  PubMed  Google Scholar 

  21. Hargrove L, et al. Real-time myoelectric control of knee and ankle motions for transfemoral amputees. JAMA. 2011;305:1542–4.

    Article  CAS  PubMed  Google Scholar 

  22. Hargrove L, et al. Non-weight-bearing neural control of a powered transfemoral prosthesis. J NeuroEng Rehabil. 2013;10:62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Clancy E, et al. Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models. IEEE Trans Biomed Eng. 2012;59:205–12.

    Article  PubMed  Google Scholar 

  24. Pfeifer S, et al. Model-based estimation of knee stiffness. IEEE Trans Biomed Eng. 2012;59:2604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoover CD, et al. Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. IEEE/ASME Trans Mechatron. 2013;18:1191–200.

    Article  Google Scholar 

  26. Wang J, et al. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In: IEEE International Conference on Rehabilitation Robotics (ICORR), Seattle; 2013.

    Google Scholar 

  27. Reinkensmeyer D, et al. Slacking by the human motor system: computational models and implications for robotic orthoses. Presented at the Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis; 2009.

    Google Scholar 

  28. Huang H, et al. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng. 2009;56:65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang H, et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular mechanical fusion. Biomed Eng IEEE Trans. 2011;58:2867–75.

    Article  Google Scholar 

  30. Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng. 2003;50:848–54.

    Article  PubMed  Google Scholar 

  31. Young A, et al. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. In: Proceedings of the 35th International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan; 2013.

    Google Scholar 

  32. Hargrove L, et al. Intuitive control of a powered prosthetic leg during ambulation. J Am Med Assoc. 2015;22:1–9.

    Article  Google Scholar 

  33. Young A, et al. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neural Eng. 2014;11:056021.

    Article  CAS  PubMed  Google Scholar 

  34. Miller J, et al. Myoelectric walking mode classification for Transtibial amputees. IEEE Trans Biomed Eng. 2013;60:2745–50.

    Article  PubMed  Google Scholar 

  35. Tkach D, Hargrove L. Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for trans-tibial amputees. Presented at the 35th Annual Conference of the IEEE Engineering in Medicine and Biology Society, Osaka Japan; 2013.

    Google Scholar 

  36. Spanias J, et al. Detection of and compensation for EMG disturbances for powered lower limb prosthesis control. IEEE Trans Biomed Eng, vol. ePub Ahead of Print; 2015.

    Google Scholar 

  37. Kim PS, et al. The effects of targeted muscle reinnervation on neuromas in a rabbit rectus abdominis flap model. J Hand Surg. 2012;37:1609–16. Aug (Epub 2012 Jul 2012).

    Article  Google Scholar 

  38. Agnew SP, et al. Targeted reinnervation in the transfemoral amputee: a preliminary study of surgical technique. Plast Reconstr Surg. 2012;129:187–94.

    Article  CAS  PubMed  Google Scholar 

  39. Hargrove L, et al. Robotic leg control with EMG decoding by an amputee with nerve transfers. New Engl J Med, Accepted for Publication 2013.

    Google Scholar 

  40. Weir REF, et al. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans Biomed Eng. 2009;56:159–71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McDonnall D, et al. Implantable multichannel wireless electromyography for prosthesis control. Presented at the Proceedings of the 33st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA; 2012.

    Google Scholar 

  42. Polasek KH, et al. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng. 2009;17:428–37.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Micera S, et al. On the use of longitudinal intrafascicular peripheral interfaces for the control of cybernetic hand prostheses in amputees. IEEE Trans Neural Syst Rehabil Eng. 2008;16:453–72.

    Article  PubMed  Google Scholar 

  44. Branner A, et al. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans Biomed Eng. 2004;51:146–57.

    Article  PubMed  Google Scholar 

  45. Lago N, et al. Neurobiological assessment of regenerative electrodes for bidirectional interfacing injured peripheral nerves. IEEE Trans Biomed Eng. 2007;54:1129–37.

    Article  PubMed  Google Scholar 

  46. Tan D, et al. A neural interface provides long-term stable natural touch perception. Sci Trans Med. 2014;6:257ra138.

    Article  Google Scholar 

  47. Ortiz-Catalan M, et al. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Trans Med. 2015;6:257re6.

    Article  Google Scholar 

  48. Raspopovic S, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Trans Med. 2014;6:22ra19.

    Article  Google Scholar 

  49. Dhillon GS, et al. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg (American Volume). 2004;29A:605–15.

    Article  Google Scholar 

  50. Hochberg LR, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442:164–71.

    Article  CAS  PubMed  Google Scholar 

  51. Gwin J, et al. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2011;54:1289–96.

    Article  PubMed  Google Scholar 

  52. Gwin J, Ferris D. An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions. J Neuroeng Rehabil. 2012;9:35.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin JL, Cash SS, vad der Smagt P, Donoghue JP. Reach and Grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485:372–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collinger J, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381:557–64.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kuiken TA, et al. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc Natl Acad Sci USA. 2007;104:20061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levi Hargrove PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Hargrove, L. (2017). Volitional Control Research. In: Tepe, V., Peterson, C. (eds) Full Stride. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7247-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7247-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7245-6

  • Online ISBN: 978-1-4939-7247-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics