Skip to main content

Synthetic and Biological Multifunctional Smart Materials Applications to Lower Extremity Gait Systems

  • Chapter
  • First Online:
Full Stride

Abstract

This chapter presents a review of ongoing research and development on multifunctional “smart” materials and artificial muscles that may be used for lower extremity gait devices, orthotics, prostheses, and systems. Discussions are presented on fibrous contractile chemomechanical polymeric artificial muscles, polyacrylonitrile (PAN) contractile artificial muscles which are also electrochemically controllable. A brief discussion is also presented on the applications of soft artificial muscles made with ionic biopolymers such as chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C-PAN:

Conductive polyacrylonitrile

CP:

Conductive polymer

FES:

Functional electrical stimulation

Gly-Gly:

Glycylglycine

IBPMC:

Ionic biopolymer metal composite

IPCC:

Ionic polymer conductor composite

IPCNC:

Ionic polymer conductor nanocomposite

IPMNC:

Ionic polymer metal nanocomposite

NMR:

Nuclear magnetic resonance

PAA-PVA:

Polyacrylic acid-polyvinyl alcohol

PAAM:

Polyacrylic-acid-bis-acrylamide

PAM:

Polyacrylamide

PAMPS:

Poly(2-acrylamido-2-methyl propane) sulfonic acid

PAN:

Polyacrylonitrile

PTFE:

Polytetrafluoroethylene

PZT:

Lead zirconate titanate

PVDF:

Polyvinylidene difluoride

PVDF-TrFE:

PVDF trifluoroethylene

RSC:

Royal society of chemistry

SMA:

Shape memory alloys

SMP:

Shape memory polymers

References

  1. Katchalsy A. Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experientia. 1949;15:VIII: 5(8):319–320.

    Google Scholar 

  2. Kuhn W. Reversible Dehung und Kontraction Bei Anderung Der Ionisation Lines Netwerks Polyvalender Fadenmolekulionen. Experientia. 1949;5:318–9.

    Article  CAS  PubMed  Google Scholar 

  3. Katchalsy A. Polyelectrolyte gels. London: Pergamon Press; 1954.

    Google Scholar 

  4. Pollack GH. Cells, gells, and the engines of life. Seattle: Ebner & Sons Publishers; 2001.

    Google Scholar 

  5. Huxley AF. Muscular contraction. J Physiol. 1974;243(1):1–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schneider HJ, Kato K, Strongin RM. Chemomechanical polymers as sensors and actuators for biological and medicinal applications. Sensors (Basel). 2007;7(8):1578–611.

    Article  CAS  Google Scholar 

  7. Schneider HJ, Kato K. Chemomechanical polymers in intelligent materials. 1st ed. Milton Road Cambridge: Royal Society of Chemistry (RSC) Publishers, Thomas Graham House, Science Park; 2008.

    Google Scholar 

  8. Kim KJ, Caligiuri J, Shahinpoor M. Contraction/elongation behaviour of cation-modified polyacrylonitrile fibers. Proceeding of SPIE 10th annual international symposium on smart structures and materials 2003, San Diego, SPIE Publication No. 5051-23; 2003. p. 207–13.

    Google Scholar 

  9. Kim KJ, Choe K, Samathan R, Nam J, Shahinpoor M, Adams J. Toward nanobiomimetic muscles: polyacrylonitrile nanofibers. Proceeding of SPIE 11th annual international symposium on smart structures and materials, 2004 San Diego, SPIE Publication No. 5385-62; 2004. p. 33–43.

    Google Scholar 

  10. Shahinpoor M. Surgical correction of ptosis by ionic polyacrylonitrile artificial muscles. Proceedings American Society for Artificial Internal Organs (ASAIO), 56th Annual conference, 2010: May 27–29, Baltimore, CD ROM Proceedings, 2010.

    Google Scholar 

  11. Kim KJ, Caligiuri J, Choi K, Samatham R, Shahinpoor M, Norris ID, Mattes BR. Polyacrylonitrile nanofibers as artificial nano-muscles. Proceedings of the first world congress on biomimetics and artificial muscle (biomimetics 2002, Dec 9–11, 2002, Albuquerque Convention Center, Albuquerque, 2002.

    Google Scholar 

  12. Shahinpoor M, Kim KJ, Schreyer HB. Artificial sarcomere and muscle made with conductive polyacrylonitrile (C-PAN) fiber bundles. Proceedings of SPIE 7th international symposium on smart structures and materials, Newport Beach, 2000:3687; 2000. p. 243–51.

    Google Scholar 

  13. Kim KJ, Shahinpoor M. Electrical activation of contractile polyacrylonitrile (PAN)-conductor composite fiber bundles as artificial muscles. Proceedings of the first world congress on biomimetics and artificial muscle (Biomimetics 2002), Dec 9–11, 2002, Albuquerque Convention Center, Albuquerque, 2002.

    Google Scholar 

  14. Shahinpoor M, Ahghar M. Modeling of electrochemical deformation in poly-acrylonitrile (PAN) artificial muscles. Proceedings of the first world congress on biomimetics and artificial muscle (Biomimetics 2002), Dec 9–11,Albuquerque Convention Center, Albuquerque, 2002.

    Google Scholar 

  15. Brett Schreyer H, Shahinpoor M, Kwang K. Electrical activation of PAN artificial muscles Proc. SPIE smart materials and structures conference, March 1–5, 1999, New Port Beach, California, Publication No. SPIE 3669–19. 1999. p. 192–8.

    Google Scholar 

  16. Choi K, Kim KJ, Kim D, Manford C, Heo S, Shahinpoor M. Performance characteristics of electro-chemically driven Polyacrylonitrile fiber bundle actuators. J Intell Mater Syst Struct. 2006;17(7):563–76.

    Article  Google Scholar 

  17. Schreyer HB, Gebhart N, Kim KJ, Shahinpoor M. Electric activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules. 2000;1(4):642–7.

    Article  CAS  PubMed  Google Scholar 

  18. Shahinpoor M, Kim KJ, Sillerud LO, Norris ID, Mattes BR. Electroactive Polyacrylonitrile nanofibers as artificial nanomuscles. Proceeding of SPIE 9th annual international symposium on smart structures and materials, 2002 San Diego, SPIE Publication No. 4695-42, 2002.

    Google Scholar 

  19. Hamlen RP, Kent CE, Shafer SN. Electrolytically activated contractile polymer. Nature. 1965;206:1149–50.

    Article  CAS  Google Scholar 

  20. Osada Y, Hasebe M. Electrically activated Mechanochemical devices using polyelectrolyte gels. Chem Lett. 1985:1285–8.

    Google Scholar 

  21. DeRossi DE, Chiarelli P, Buzzigoli G, Domenici C, Lazzeri L. Contractile behavior of electrically activated mechanochemical polymer actuators. Trans Am Soc Artif Intern Organs. 1986;2:157–63.

    Google Scholar 

  22. Caldwell D, Taylor P. Chemically stimulated pseudo-muscular actuation. Int J Eng Sci. 1990;28(8):797–808.

    Article  Google Scholar 

  23. Segalman D, Witkowski W, Adolf D, Shahinpoor M. Electrically controlled polymeric muscles as active materials used in adaptive structures. Proceedings of ADPA/AIAA/ASME/SPIE conference on active materials and adaptive structures, 1991, Alexandria, Nov. 1991.

    Google Scholar 

  24. Umemoto S, Okui N, Sakai T. Contraction behavior of poly(acrylonitrile) gel fibers. In: DeRossi D, et al., editors. Polymer gels, vol. 1991. Plenum Press, New York. p. 257–70.

    Google Scholar 

  25. Shahinpoor M, Kim KJ, Mojarrad M. Artificial muscles: applications of advanced polymeric Nano composites. 1st ed. London: CRC Press, Taylor & Francis Group; 2007.

    Google Scholar 

  26. Shahinpoor M. Ionic polymer metal composites (IPMCs): smart multi-functional materials and artificial muscles Volumes I & II, Royal Society of Chemistry Publishers, Dr. Cara Sutton, MRSC, Commissioning Editor, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK 2015.

    Google Scholar 

  27. Gierke TD, Hsu WY. In: Eisenberg A, Yeager HL, editors. Perfluorinated ionomer membranes. Washington, DC: ACS; 1982. p. 283–307.

    Chapter  Google Scholar 

  28. de Gennes PG, Okumura K, Shahinpoor M, Kim KJ. Mechanoelectrical effects in ionic gels. Europhys Lett (2003). 2000;50(4):513–8.

    Article  Google Scholar 

  29. Asaka K, Oguro K. J Electroanal Chem. 2000;480:186–98.

    Article  CAS  Google Scholar 

  30. Lomadze N, Schneider HJ. A chitosan-based chemomechanical polymer triggered by stacking effects with aromatic effectors including aminoacid derivatives. Tetrahedron Lett. 2005;61:8694–8.

    Article  CAS  Google Scholar 

  31. Shahinpoor M. Chitosan artificial muscles. Proceedings of the 4th international conference on smart materials, structures and systems (CIMTEC 2012), June 10–14, 2012, Montecatini Terme, Tuscany, Italy, published by Scientific.net publishers; 2012.

  32. Shahinpoor M. Chitosan/IBPMC artificial muscles. In: Advances in science and technology. Trans Tech Publications, Switzerland; 2013. Vol. 79, p. 32–40.

    Google Scholar 

  33. Shahinpoor M, Schneider HJ. Intelligent materials. Published by Royal Society of Chemistry (RSC) Publishers, Thomas Graham House, Science Park, Milton Road Cambridge CB4 0WF, Great Britain, 1st ed. 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Shahinpoor BSc, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Shahinpoor, M. (2017). Synthetic and Biological Multifunctional Smart Materials Applications to Lower Extremity Gait Systems. In: Tepe, V., Peterson, C. (eds) Full Stride. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7247-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7247-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7245-6

  • Online ISBN: 978-1-4939-7247-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics