Skip to main content

Orthotic Device Research

  • Chapter
  • First Online:
Full Stride

Abstract

Orthoses are assistive devices that support joints through alignment, stabilization, or assisting weakened musculature. The cost associated with orthotic treatment is substantial, and the demand is outpacing the supply. Patient comfort and performance are influenced by orthosis fit (size or shape) as well as function (mechanical aspects). To achieve optimal performance outcomes, an orthosis must be customized to the individual patient. However, traditional fabrication methods do not readily support the objective prescription and manufacture of orthosis mechanical aspects. There is a need for processes that promote better patient outcomes. Here, we seek to identify promising approaches, contemporary methods, and existing gaps that may provide enhanced benefit and value to the orthotic user. This chapter examines the current state of patient care practices as well as cutting-edge research and technologies primarily associated with ankle-foot orthoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFOs:

Ankle-foot orthoses

BRUCE:

Biarticular Reciprocating Universal Compliance Estimator

CAD:

Computer-aided design

CAM:

Computer-aided manufacturing

IDEO:

Intrepid Dynamic Exoskeletal Orthosis

FOs:

Foot orthoses

KAFOS:

Knee-ankle-foot orthoses

OEF:

Operation Enduring Freedom

OIF:

Operation Iraqi Freedom

References

  1. Harlaar J, Brehm M, Becher JG, Bregman DJJ, Buurke J, Holtkamp F, De Groot V, Nollet F. Studies examining the efficacy of ankle foot orthoses should report activity level and mechanical evidence. Prosthetics Orthot Int. 2010;34:327–35.

    Article  Google Scholar 

  2. Shorter KA, Xia J, Hsiao-Wecksler ET, Durfee WK, Kogler GF. Technologies for powered ankle-foot orthotic systems: possibilities and challenges. IEEE/ASME Trans Mechatron. 2013;18:337–47.

    Google Scholar 

  3. Condie DN. The modern era of orthotics. Prosthetics Orthot Int. 2008;32:313–23.

    Article  Google Scholar 

  4. Brault MW. Americans with disabilities: 2005. Curr Popul Rep US Census Bur. 2008:70–117.

    Google Scholar 

  5. Owens BD, Kragh JF, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2007;21:254–7.

    Article  PubMed  Google Scholar 

  6. Patzkowski JC, Rivera JC, Ficke JR, Wenke JC. The changing face of disability in the US Army: the Operation Enduring Freedom and Operation Iraqi Freedom effect. J Am Acad Orthop Surg. 2012;20(Suppl 1):S23–30.

    Article  PubMed  Google Scholar 

  7. Masini BD, Waterman SM, Wenke JC, Owens BD, Hsu JR, Ficke JR. Resource utilization and disability outcome assessment of combat casualties from Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2009;23:261–6.

    Article  PubMed  Google Scholar 

  8. (2010) Part B national summary data file.

    Google Scholar 

  9. Nielson CC. The future demand for orthotists and prosthetists: update 2002. Natl Comm Orthotic Prosthet Educ. 2002:1–27.

    Google Scholar 

  10. Bregman DJJ, De Groot V, Van Diggele P, Meulman H, Houdijk H, Harlaar J. Polypropylene ankle foot orthoses to overcome drop-foot gait in central neurological patients: a mechanical and functional evaluation. Prosthetics Orthot Int. 2010;34:239–304.

    Article  Google Scholar 

  11. Brehm M, Bus SA, Harlaar J, Nollet F. A candidate core set of outcome measures based on the International Classification of Functioning, Disability and Health for clinical studies on lower limb orthoses. Prosthetics Orthot Int. 2011;35:269–77.

    Article  Google Scholar 

  12. Malas BS. What variables influence the ability of an AFO to improve function and when are they indicated? Clin Orthop Relat Res. 2011;469:1308–14.

    Article  PubMed  Google Scholar 

  13. Ball KA, Afheldt MJ. Evolution of foot orthotics—part 2: research reshapes long-standing theory. J Manip Physiol Ther. 2002;25:125–34.

    Article  Google Scholar 

  14. Ossur (2013) AFO dynamic. Foothill Ranch, California.

    Google Scholar 

  15. Ottobock (2013) WalkOn ® family of AFOs. Minneapolis, Minnesota.

    Google Scholar 

  16. (2013) Noodle AFO. Lutz, Florida.

    Google Scholar 

  17. Doxey GE. Clinical use and fabrication of molded thermoplastic foot orthotic devices. Suggestion from the field. Phys Ther. 1985;65:1679–82.

    Article  CAS  PubMed  Google Scholar 

  18. Bedotto RA. Biomechanical assessment and treatment in lower extremity prosthetics and orthotics: a clinical perspective. Phys Med Rehabil Clin N Am. 2006;17:203–43.

    Article  PubMed  Google Scholar 

  19. Pomeranz B. Prosthetics and orthotics for older adult with a physical disability. Clin Geriartic Med. 2006;22:377–94.

    Article  Google Scholar 

  20. Perry J, Clark D. Biomechanical abnormalities of post-polio patients and the implications for orthotic management. NeuroRehabilitation. 1997;8:119–38.

    Article  CAS  PubMed  Google Scholar 

  21. Hijmans JM, Geertzen JHB. Development of clinical guidelines for the prescription of orthoses in patients with neurological disorders in The Netherlands. Prosthetics Orthot Int. 2006;30:35–43.

    Article  CAS  Google Scholar 

  22. Smith DG, Burgess EM. The use of CAD/CAM technology in prosthetics and orthotics – current clinical models and a view to the future. J Rehabil Res Dev. 2001;38:327–34.

    CAS  PubMed  Google Scholar 

  23. Sanders JE, Severance MR, Myers TR, Ciol MA. Central fabrication: carved positive assessment. Prosthetics Orthot Int. 2011;35:81–9.

    Article  Google Scholar 

  24. Convery P, Greig RJ, Ross RS, Sockalingam S. A three centre study of the variability of ankle foot orthoses due to fabrication and grade of polypropylene. Prosthetics Orthot Int. 2004;28:175–82.

    Article  CAS  Google Scholar 

  25. Telfer S, Woodburn J. The use of 3D surface scanning for the measurement and assessment of the human foot. J Foot Ankle Res. 2010;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mavroidis C, Ranky RG, Sivak ML, et al. Patient specific ankle-foot orthoses using rapid prototyping. J Neuroeng Rehabil. 2011;8:1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Telfer S, Gibson KS, Hennessy K, Steultjens MP, Woodburn J. Computer-aided design of customized foot orthoses: reproducibility and effect of method used to obtain foot shape. Arch Phys Med Rehabil. 2012;93:863–70.

    Article  PubMed  Google Scholar 

  28. Telfer S, Pallari J, Munguia J, Dalgarno K, McGeough M, Woodburn J. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC Musculoskelet Disord. 2012;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faustini MC, Neptune RR, Crawford RH, Stanhope SJ. Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Trans Biomed Eng. 2008;55:784–90.

    Article  PubMed  Google Scholar 

  30. Pallari JHP, Dalgarno KW, Woodburn J. Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE Trans Biomed Eng. 2010;57:1750–6.

    Article  PubMed  Google Scholar 

  31. Schrank ES, Stanhope SJ. Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework. J Rehabil Res Dev. 2011;48:31–42.

    Article  PubMed  Google Scholar 

  32. Stanhope SJ, Schrank ES. Process and System for Manufacturing a Customized Orthosis. Patent: United States Patent No. 8,538,570, 2013.

    Google Scholar 

  33. Chevalier TL, Chockalingam N. Effects of foot orthoses: how important is the practitioner? Gait Posture. 2011;35:383–8.

    Article  PubMed  Google Scholar 

  34. Ridgewell E, Dobson F, Bach T, Baker R. A systematic review to determine best practice reporting guidelines for AFO interventions in studies involving children with cerebral palsy. Prosthetics Orthot Int. 2010;34:129–45.

    Article  Google Scholar 

  35. Owen E. The importance of being earnest about shank and thigh kinematics especially when using ankle-foot orthoses. Prosthetics Orthot Int. 2010;34:254–69.

    Article  Google Scholar 

  36. Miyazaki S, Yamamoto S, Kubota T, Kubota T. Effect of ankle-foot orthosis on active ankle moment in patients with hemiparesis. Med Biol Eng Comput. 1997;35:381–5.

    Article  CAS  PubMed  Google Scholar 

  37. Sumiya T, Suzuki Y, Kasahara T. Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline Part 2: orthosis characteristics and orthosis/patient matching. Prosthetics Orthot Int. 1996;20:132–7.

    CAS  Google Scholar 

  38. Kobayashi T, Leung AKL, Hutchins SW. Techniques to measure rigidity of ankle-foot orthosis: a review. J Rehabil Res Dev. 2011;48:565–76.

    Article  PubMed  Google Scholar 

  39. Kobayashi T, Leung AKL, Akazawa Y, Hutchins SW. Design of a stiffness-adjustable ankle-foot orthosis and its effect on ankle joint kinematics in patients with stroke. Gait Posture. 2011;33:721–3.

    Article  PubMed  Google Scholar 

  40. Kobayashi T, Leung AKL, Akazawa Y, Hutchins SW. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke. Gait Posture. 2013;37:457–9.

    Article  PubMed  Google Scholar 

  41. Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech. 2004;37:1467–74.

    Article  PubMed  Google Scholar 

  42. Kao P-C, Lewis CL, Ferris DP. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech. 2010;43:203–9.

    Article  PubMed  Google Scholar 

  43. Arch ES, Stanhope SJ. Passive-dynamic ankle-foot orthoses substitute for ankle strength while causing adaptive gait strategies: a feasibility study. Ann Biomed Eng. 2015;43:442–50.

    Article  PubMed  Google Scholar 

  44. Bartonek A, Eriksson M, Gutierrez-Farewik EM. A new carbon fibre spring orthosis for children with plantarflexor weakness. Gait Posture. 2007;25:652–6.

    Article  PubMed  Google Scholar 

  45. Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J Neuroeng Rehabil. 2015;12:1–13.

    Article  CAS  Google Scholar 

  46. Arch ES, Reisman DS, Sniffen ZB, Stanhope SJ. A strength enhancement paradigm for prescription of passive-dynamic ankle-foot orthoses for individuals post-stroke. World Congr. Biomech. 2014;3(2):442–50.

    Google Scholar 

  47. Bregman DJJ, van der Krogt MM, de Groot V, Harlaar J, Wisse M, Collins SH. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study. Clin Biomech. 2011;26:955–61.

    Article  CAS  Google Scholar 

  48. Bregman DJJ, Harlaar J, Meskers CGM, De Groot V, de Groot V. Spring-like ankle foot orthoses reduce the energy cost of walking by taking over ankle work. Gait Posture. 2012;35:148–53.

    Article  CAS  PubMed  Google Scholar 

  49. Ramsey JAA. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness. Prosthetics Orthot Int. 2011;35:54–69.

    Article  Google Scholar 

  50. Schrank ES, Hitch L, Wallace K, Moore R, Stanhope SJ. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses. J Biomech Eng. 2013;135:101011–7.

    Article  PubMed  Google Scholar 

  51. Bregman DJJ, Rozumalski A, Koops D, de Groot V, Schwartz M, Harlaar J. A new method for evaluating ankle foot orthosis characteristics: BRUCE. Gait Posture. 2009;30:144–9.

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi K, Stanhope SJ. Estimates of stiffness for ankle-foot orthoses are sensitive to loading conditions. J Prosthetics Orthot. 2010;22:211–9.

    Article  Google Scholar 

  53. Fong DT-P, Pang K-Y, Chung MM-L, Hung AS-L, Chan K-M. Evaluation of combined prescription of rocker sole shoes and custom-made foot orthoses for the treatment of plantar fasciitis. Clin Biomech (Bristol, Avon). 2012;27:1072–7.

    Article  Google Scholar 

  54. Jagadamma KC, Owen E, Coutts FJ, Herman J, Yirrell J, Mercer TH, Van Der Linden ML. The effects of tuning an ankle-foot orthosis footwear combination on kinematics and kinetics of the knee joint of an adult with hemiplegia. Prosthetics Orthot Int. 2010;34:270–6.

    Article  Google Scholar 

  55. Eddison N, Chockalingam N. The effect of tuning ankle foot orthoses-footwear combination on the gait parameters of children with cerebral palsy. Prosthetics Orthot Int. 2013;37:95–107.

    Article  Google Scholar 

  56. Patzkowski JC, Blanck RV, Owens JG, Wilken JM, Blair JA, Hsu JR. Can an ankle-foot orthosis change hearts and minds? J Surg Orthop Adv. 2011;20:8–18.

    PubMed  Google Scholar 

  57. Patzkowski JC, Blanck RV, Owens JG, Wilken JM, Kirk KL, Wenke JC, Hsu JR. Comparative effect of orthosis design on functional performance. J bone Jt Surg. 2012;94:507–15.

    Article  Google Scholar 

  58. Blaya JA, Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004;12:24–31.

    Article  PubMed  Google Scholar 

  59. Herr H, Blaya JA, Pratt GA. Active Ankle foot orthosis. Patent: United States Patent No. 8,075,633, 2011.

    Google Scholar 

  60. Bulea TC, Member S, Kobetic R, To CS, Audu ML, Schnellenberger JR, Triolo RJ. A variable impedance knee mechanism for controlled stance flexion during pathological gait. IEEE/ASME Trans Mechatron. 2012;17:822–32.

    Article  Google Scholar 

  61. Gordon KE, Ferris DP. Learning to walk with a robotic ankle exoskeleton. J Biomech. 2007;40:2636–44.

    Article  PubMed  Google Scholar 

  62. Sawicki GS, Ferris DP. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil. 2009;6:23.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ingimundarson AT, de Roy K. Ankle-foot orthosis having an orthotic footplate. 2009. https://www.google.com/patents/US7513880.

  64. Campbell JH, Zalinski N, Naft JM, Newman WS. Orthosis knee joint and sensor. 2008. https://www.google.tl/patents/US7410471.

  65. Chin R, Hsiao-wecksler ET, Loth E, Kogler G, Manwaring SD, Tyson SN, Shorter KA, Gilmer JN. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. J Neuroeng Rehabil. 2009;6:1–11.

    Article  Google Scholar 

  66. Jonsson H, Clausen AV, Ingimarsson G, Lecomte C, Sigfusson L, Ragnarsdottir HG. Actuator assembly for prosthetic or orthotic joint. 2016. https://www.google.com/patents/US9351854.

  67. Pallari JHP, Jens RW-S. Artificial exoskeleton device or an orthotic device comprising an integrated hinge structure. 2011. https://www.google.com/patents/US20110009787.

  68. Takemura H, Onodera T, Ming D, Mizoguchi H. Design and control of a wearable Stewart Platform-type ankle-foot assistive device. Int J Adv Robot Syst. 2012;9:1–7.

    Article  Google Scholar 

  69. Kim GD, Oh YT. A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc Inst Mech Eng Part B J Eng Manuf. 2008;222:201–15.

    Article  Google Scholar 

  70. Smith PC, Rennie AEW. A computer aided design (CAD) support tool for parametric design of products from rapid manufacture (RM). In: Bartolo P, editor. Innovative developments in design and manufacturing advanced research in virtual and rapid prototyping – Proceedings of VRP4. CRC Press; 2009. p. 95–100. http://www.crcnetbase.com/doi/10.1201/9780203859476.ch13, https://www.routledge.com/Innovative-Developments-in-Design-and-Manufacturing-Advanced-Research/Silva-Bartolo-Artur-Jorge-da-Conceicao-Batista-Almeida-Matias-Correia-Vasco-Gaspar-Correia-Andre- Alves-Novo-Goncalves-Martinho-Carvalho/p/book/9780415873079.

  71. Muraru L, Pallari JHP, Creylman V, Vander Sloten J, Peeraer L. SLS nylon 12 characterization through tensile testing and digital image correlation for finite element modeling of foot and ankle-foot orthoses. Proc Solid Free Fabr Symp. 2010. p. 828–833.

    Google Scholar 

  72. Toon D, Vinet A, Pain MTG, Caine MP. A methodology to investigate the relationship between lower-limb dynamics and shoe stiffness using custom-built footwear. Proc Inst Mech Eng Part P J Sport Eng Technol. 2011;225:32–7.

    Google Scholar 

  73. Lowe CE. System and method for creating Orthtoics. 2007. https://google.com/patents/WO2005086857A3?cl=sv.

  74. Crabtree P, Dhokia VG, Newman ST, Ansell MP. Manufacturing methodology for personalised symptom-specific sports insoles. Robot Comput Integr Manuf. 2009;25:972–9.

    Article  Google Scholar 

  75. Sivak ML, Ranky RG, DiPisa JA, Caddle AL, Gilhooly KL, Govoni LC, Sivak SJ, Lancia M, Bonato P, Mavroidis C. Patient specific ankle-foot orthotic device. 2009.

    Google Scholar 

  76. National Center for Chronic Disease Prevention and Health Promotion. Chronic diseases the power to prevent, the call to control. 2009

    Google Scholar 

  77. Centers for Medicare & Medicaid Services. National health expenditures 2001 highlights. 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa S. Arch PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Arch, E.S., Stanhope, S.J. (2017). Orthotic Device Research. In: Tepe, V., Peterson, C. (eds) Full Stride. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7247-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7247-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7245-6

  • Online ISBN: 978-1-4939-7247-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics