Skip to main content

Overview of the Components Used in Active and Passive Lower-Limb Prosthetic Devices

  • Chapter
  • First Online:
Full Stride

Abstract

This chapter provides an overview of the current state of the art in lower-limb prosthetic componentry, highlighting both the performance capabilities achieved with current limb systems and the limitations that prevent full restoration of function lost due to lower-limb amputation. The overview first covers the socket interface, beginning with designs for supporting weight-bearing loads and suspending the prosthetic limb commonly used in below-knee and above-knee socket systems. This is followed by a presentation of advanced socket componentry for realizing functions such as vacuum-assisted suspension of the prosthesis and accommodation of fluctuations in residual-limb volume. The focus then shifts to passive and active components used in prosthetic foot, ankle, and knee systems. Energetically passive systems are covered first, spanning from purely mechanical designs with and without energy-storage components to microprocessor-controlled designs for both the ankle and knee. The overview concludes with a presentation of current and emerging bionic knee, ankle, and knee-ankle systems that integrate external power and actuation for expanded functional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CESR:

Controlled energy storage and return

DC:

Direct current

IC:

Ischial containment

ICEROSS:

Icelandic roll-on silicone socket

KBM:

Kondylen Bein Muenster

PTB:

Patellar-tendon-bearing

PTS:

Patellar-tendon-supracondylar

SACH:

Solid ankle cushion heel

TSB:

Total surface bearing

References

  1. Radcliffe CW, Foort J. The patellar-tendon-bearing below-knee prosthesis. Berkeley: University of California, Biomechanics Laboratory; 1961.

    Google Scholar 

  2. Fillauer CE, Pritham CH, Fillauer KD. Evolution and development of the silicone suction socket (3S) for below-knee prostheses. J Prosthet Orthot. 1989;1(2):92–108.

    Article  Google Scholar 

  3. Kristinsson O. The ICEROSS concept: a discussion of a philosophy. Prosthet Orthot Int. 1993;17(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  4. Marschall K, Nitschke R. The P.T.S. Prosthesis (complete enclosure of patella and femoral condyles in below knee fitting). Orthop Prosthet Appl J. 1966;20:123–6.

    Google Scholar 

  5. Kay HW. Notes on the KBM prosthesis. J Assoc Child Prosthet Orthot Clin. 1968;8(1):18–9.

    Google Scholar 

  6. Lilja M, Johansson T, Oberg T. Movement of the tibial end in a PTB prosthesis socket: a sagittal X-ray study of the PTB prosthesis. Prosthet Orthot Int. 1993;17(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  7. Hachisuka K, Dozono K, Ogata H, Ohmine S, Shitama H, Shinkoda K. Total surface bearing below-knee prosthesis: advantages, disadvantages, and clinical implications. Arch Phys Med Rehabil. 1998;79(7):783–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hachisuka K, Nakamura T, Ohmine S, Shitama H, Shinkoda K. Hygiene problems of residual limb and silicone liners in transtibial amputees wearing the total surface bearing socket. Arch Phys Med Rehabil. 2001;82(9):1286–90.

    Article  CAS  PubMed  Google Scholar 

  9. Narita H, Yokogushi K, Shii S, Kakizawa M, Nosaka T. Suspension effect and dynamic evaluation of the total surface bearing (TSB) transtibial prosthesis: a comparison with the patellar tendon bearing (PTB) trans-tibial prosthesis. Prosthet Orthot Int. 1997;21(3):175–8.

    CAS  PubMed  Google Scholar 

  10. Yigiter K, Sener G, Bayar K. Comparison of the effects of patellar tendon bearing and total surface bearing sockets on prosthetic fitting and rehabilitation. Prosthet Orthot Int. 2002;26(3):206–12.

    Article  CAS  PubMed  Google Scholar 

  11. Selles RW, Janssens PJ, Jongenengel CD, Bussmann JB. A randomized controlled trial comparing functional outcome and cost efficiency of a total surface-bearing socket versus a conventional patellar tendon-bearing socket in transtibial amputees. Arch Phys Med Rehabil. 2005;86(1):154–61.

    Article  PubMed  Google Scholar 

  12. Radcliffe CW. Functional considerations in the fitting of above-knee prostheses. Artif Limbs. 1955;2(1):35–60.

    CAS  PubMed  Google Scholar 

  13. Redhead RG. Total surface bearing self suspending above-knee sockets. Prosthet Orthot Int. 1979;3(3):126–36.

    CAS  PubMed  Google Scholar 

  14. Pritham CH. Biomechanics and shape of the above-knee socket considered in light of the ischial containment concept. Prosthet Orthot Int. 1990;14(1):9–21.

    CAS  PubMed  Google Scholar 

  15. Board WJ, Street GM, Caspers C. A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthetics Orthot Int. 2001;25(3):202–9.

    Article  CAS  Google Scholar 

  16. Beil TL, Street GM, Covey SJ. Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J Rehabil Res Dev. 2002;39(6):693–700.

    PubMed  Google Scholar 

  17. Sanders JE, Harrison DS, Myers TR, Allyn KJ. Effects of elevated vacuum on in-socket residual limb fluid volume: case study results using bioimpedance analysis. J Rehabil Res Dev. 2011;48(10):1231–48.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sanders JE, Cassisi DV. Mechanical performance of inflatable inserts used in limb prosthetics. J Rehabil Res Dev. 2001;38(4):365–74.

    CAS  PubMed  Google Scholar 

  19. Greenwald RM, Dean RC, Board WJ. Volume management: smart variable geometry socket (SVGS) technology for lower-limb prostheses. J Prosthet Orthot. 2003;15(3):107–12.

    Article  Google Scholar 

  20. Sanders JE, Jacobsen AK, Fergason JR. Effects of fluid insert volume changes on socket pressures and shear stresses: case studies from two trans-tibial amputee subjects. Prosthetics Orthot Int. 2006;30(3):257–69.

    Article  CAS  Google Scholar 

  21. Galea AM, Leroy K, Truong TQ, inventors. Active prosthetic socket. United States Patent 20120271433. 2012 Oct 25.

    Google Scholar 

  22. Hagberg K, Branemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses—rehabilitation perspective. J Rehabil Res Dev. 2009;46(3):331–44.

    Article  PubMed  Google Scholar 

  23. Tillander J, Hagberg K, Hagberg L, Branemark R. Osseointegrated titanium implants for limb prostheses attachments. Clin Orthop Relat Res. 2010;468(10):2781–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Doane NE, Holt LE. A comparison of the SACH single axis foot in the gait of unilateral below-knee amputees. Prosthetics Orthot Int. 1983;7(1):33–6.

    CAS  Google Scholar 

  25. Goh JCH, Solomonidis SE, Spence WD, Paul JP. Biomechanical evaluation of SACH and uniaxial feet. Prosthetics Orthot Int. 1984;8(3):147–54.

    CAS  Google Scholar 

  26. Burgess EM, Poggi DL, Hittenberger DA, et al. Development and preliminary evaluation of the VA Seattle foot. J Rehabil Res Dev. 1985;22(3):75–84.

    Article  CAS  PubMed  Google Scholar 

  27. Hafner BJ, Sanders JE, Czerniecki J, Fergason J. Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech. 2002;17(5):325–44.

    Article  Google Scholar 

  28. Portnoy S, Kristal A, Gefen A, Siev-Ner I. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Gait Posture. 2012;35(1):121–5.

    Article  PubMed  Google Scholar 

  29. Sedki I, Moore R. Patient evaluation of the echelon foot using the Seattle prosthesis evaluation questionnaire. Prosthetics Orthot Int. 2013;37(3):250–4.

    Article  Google Scholar 

  30. Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech. 2009;24(10):860–5.

    Article  Google Scholar 

  31. Fradet L, Alimusaj M, Braatz F, Wolf SI. Biomechanical analysis of ramp ambulation of transtibial amputees with adaptive ankle foot system. Gait Posture. 2010;32(2):191–8.

    Article  PubMed  Google Scholar 

  32. Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. PLoS ONE. 2010;5(2):e9307.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Segal AD, Zelik KE, Klute GK, et al. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation. Hum Mov Sci. 2012;31(4):918–31.

    Article  PubMed  Google Scholar 

  34. Radcliffe CW. Four-bar linkage prosthetic knee mechanisms: kinematics, alignment, and prescription criteria. Prosthet Orthot Int. 1994;18(3):159–73.

    CAS  PubMed  Google Scholar 

  35. Gard SA, Childress DS, Uellendahl JE. The influence of four-bar linkage knees on prosthetic swing-phase floor clearance. J Prosthet Orthot. 1996;8(2):34–40.

    Article  Google Scholar 

  36. Greene MP. Four bar linkage knee analysis. Orthot Prosthet. 1983;37(1):15–24.

    Google Scholar 

  37. Schmalz T, Blumentritt S, Jarasch J. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002;16(3):255–63.

    Article  PubMed  Google Scholar 

  38. Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil. 2005;84(8):563–75.

    Article  PubMed  Google Scholar 

  39. Kaufman KR, Levine JA, Brey RH, McCrady SK, Padgett DJ, Joyner MJ. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Arch Phys Med Rehabil. 2008;89(7):1380–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berry D, Olson MD, Larntz K. Perceived stability, function, and satisfaction among transfemoral amputees using microprocessor and nonmicroprocessor controlled prosthetic knees: a multicenter survey. J Prosthet Orthot. 2009;21(1):32–42.

    Article  Google Scholar 

  41. Blumentritt S, Schmalz T, Jarasch R. The safety of C-leg: biomechanical tests. J Prosthet Orthot. 2009;21(1):2–15.

    Article  Google Scholar 

  42. Bellmann M, Schmalz T, Ludwigs E, Blumentritt S. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation. Arch Phys Med Rehabil. 2012;93(3):541–9.

    Article  PubMed  Google Scholar 

  43. Kannenberg A, Zacharias B, Mileusnic M, Seyr M. Activities of daily living: Genium bionic prosthetic knee compared with C-leg. J Prosthet Orthot. 2013;25(3):110–7.

    Article  Google Scholar 

  44. Au SK, Weber J, Herr H. Powered ankle – foot prosthesis improves walking metabolic economy. IEEE Trans Robot. 2009;25(1):51–66.

    Article  Google Scholar 

  45. Grabowski AM, Susan D. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J Neuroeng Rehabil. 2013;10(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Herr H, Grabowski A. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc R Soc B. 2012;279(1728):457–64.

    Article  PubMed  Google Scholar 

  47. Hitt JK, Sugar TG, Holgate M, Bellman R. An active foot-ankle prosthesis with biomechanical energy regeneration. J Med Device. 2010;4(1):011003.

    Article  Google Scholar 

  48. Hitt J, Merlo J, Johnston J, et al. Bionic running for unilateral transtibial military amputees. New York: Military Academy West Point; 2010.

    Google Scholar 

  49. Highsmith MJ, Kahle JT, Carey SL, Lura DJ, Dubey RV, Quillen WS. Kinetic differences using a power knee and C-leg while sitting down and standing up: a case report. J Prosthet Orthot. 2010;22(4):237–43.

    Article  Google Scholar 

  50. Wolf EJ, Everding VQ, Linberg AA, Czerniecki JM, Gambel JM. Comparison of the power knee and C-leg during step-up and sit-to-stand tasks. Gait Posture. 2013;38(3):397–402.

    Article  PubMed  Google Scholar 

  51. Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE ASME Trans Mechatron. 2009;14(6):2009.

    Article  Google Scholar 

  52. Sup F, Varol HA, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans Neural Syst Rehabil Eng. 2011;19(1):71–8.

    Article  PubMed  Google Scholar 

  53. Lawson B, Varol H, Huff A, Erdemir E, Goldfarb M. Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):466–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Fite PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Fite, K.B. (2017). Overview of the Components Used in Active and Passive Lower-Limb Prosthetic Devices. In: Tepe, V., Peterson, C. (eds) Full Stride. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7247-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7247-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7245-6

  • Online ISBN: 978-1-4939-7247-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics