Skip to main content

Aspects of the Biology and Physics Underlying Modified Atmosphere Packaging

  • Chapter
  • First Online:
Minimally Processed Refrigerated Fruits and Vegetables

Part of the book series: Food Engineering Series ((FSES))

  • 2106 Accesses

Abstract

In this chapter, we consider the effects of low levels of O2 and high levels of CO2 on the longevity of detached plant tissues; the effects of slicing on tissue metabolism; the determination of gas diffusivities through plant tissues, e.g., the diffusion of CO2 in apples and potato tubers; the measurement of gases in intercellular spaces; experimental modeling for appropriate gas environments in modified atmosphere packaging (MAP), taking into account the rate of respiration; and both steady-state and dynamic modeling for MAP. The most important aspect of MAP for the longevity of these commodities is the decrease in O2 concentration that leads to the induction of a metabolic depression. In the case of climacteric fruit, the metabolic depression is saturable with respect to O2 concentration. For instance, in apple fruits, the delay in the onset of the ethylene climacteric is initiated when the O2 concentration drops below 8%. Also a combination of low temperature (1–2.5 °C) and low O2 concentration (1.5–2.5%) can extend the storage life of apples for a year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Baki AA, Solomos T (1994) Diffusivity of carbon dioxide through the skin and flesh of ‘Russet Burbank’ potato tubers. J Am Soc Hort Sci 119:742–746

    Google Scholar 

  • apRees T, Beevers H (1960) Pentose phosphate pathway as a major component of induced respiration of carrot and potato slices. Plant Physiol 35:839–847

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signaling in response to oxygen deprivation in plants and other organs. Ann Bot (Lond) 96:507–518

    Article  CAS  Google Scholar 

  • Banks NH (1985) Estimating skin resistance to gas diffusion in apples and potatoes. J Exp Bot 36:1842–1850

    Article  CAS  Google Scholar 

  • Banks NH, Kays SJ (1988) Measuring internal gases and lenticel resistance to gas diffusion in potato tubers. J Am Soc Hort Sci 113:577–580

    Google Scholar 

  • Beevers H (1961) Plant respiration. Row, Paterson and Co., New York

    Google Scholar 

  • Ben-Yehoshua S, Shapiro B, Even-Chen Z, Lurie S (1983) Mode of action of plastic film in extending life of lemon and bell pepper fruits by alleviation of water stress. Plant Physiol 73:87–93

    Article  CAS  Google Scholar 

  • Biale JB (1946) Effect of oxygen concentration on respiration of avocado fruit. Am J Bot 33:363–373

    Article  CAS  Google Scholar 

  • Biale JB (1960) Respiration of fruits. In: Wolf J (ed) Handbuch der Plantephysiologie. Encyclopedia of plant physiology, vol X11/2. Springer, Berlin, pp 536–592

    Google Scholar 

  • Blackman FF (1954) Analytical studies in plant respiration. Cambridge University Press, London

    Google Scholar 

  • Brädle R (1968) Die Verteilung der Sauerstoffkonzentrationen in fleischigen Speicherorganen (Apfel, Bananen, Kartofelknollen). Ber Schweiz Bot Ges 78:330–364

    Google Scholar 

  • Briggs GE, Hope AB, Robertson RN (1961) Electrolytes and plant cells. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Burg SP, Burg EA (1965) Gas exchange in fruits. Physiol Plant 18:870–886

    Article  CAS  Google Scholar 

  • Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42:144–151

    Article  CAS  Google Scholar 

  • Burton WG (1950) Studies on the dormancy and sprouting of potatoes. I The oxygen content of potato tuber. New Phytol 49:121–134

    Article  CAS  Google Scholar 

  • Burton WG (1974) Some biophysical principles underlying the controlled atmosphere storage of plant material. Ann Appl Biol 78:149–168

    Article  CAS  Google Scholar 

  • Butler W, Cook C, Vaya ME (1990) Hypoxic stress inhibits multiple aspects of potato tuber wound process. Plant Physiol 93:264–270

    Article  CAS  Google Scholar 

  • Cameron AC (1989) Modified atmosphere packaging: a novel approach for optimizing package oxygen and carbon dioxide. In: Controlled Atmosphere Research Conference, Wenatchee, WA

    Google Scholar 

  • Cameron AC, Yang SF (1980) A simple method for the determination of resistance to gas diffusion in plant organs. Plant Physiol 70:21–23

    Article  Google Scholar 

  • Cameron AC, Boylan-Pett WE, Lee J (1989) Design of modified atmosphere systems. Modeling oxygen concentrations within sealed packages of tomato fruits. J Food Sci 54(1413–1416):1421

    Google Scholar 

  • Chevillotte P (1973) Relation between the reaction of cytochrome oxidase-oxygen uptake in cells in vivo. The role of diffusion. J Theor Biol 39:277–295

    Article  CAS  Google Scholar 

  • Chinnan MS (1989) Modeling gaseous environment and physio-chemical changes of fresh fruits and vegetables in modified atmospheric storage. American Chemical Society Symposium, pp 189–202

    Google Scholar 

  • Clicke RE, Hackett DP (1963) The role of protein and nucleic acid synthesis in the development of respiration in potato tuber slices. Proc Natl Acad Sci U S A 50:243–250

    Article  Google Scholar 

  • Crank J (1970) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • Davies DD (1980) Aerobic production of organic acids. In: Davies DD (ed) The biochemistry of plants. A comprehensive treatise, vol 2. Academic, New York, pp 581–611

    Google Scholar 

  • Deily KR, Rizvi SSH (1982) Optimization of parameters for packaging of fresh peaches in polymeric films. J Food Process Eng 5:23–41

    Article  Google Scholar 

  • Douce R (1985) Plant Mitochondria. Academic, New York

    Google Scholar 

  • Fidler JC, Wilkinson BG, Edney KL, Sharples RO (1973) The biology of apple and pear storage. Research Review. No. 3. Commonwealth Bureau of Horticulture and Plant Crops. East Malling, Maidstone, Kent

    Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(Supplement):S170–S180

    Article  CAS  Google Scholar 

  • Goldbeter A (1991) Models for oscillation and excitability in biochemical systems. In: Biological kinetics. Cambridge University Press, Cambridge, pp 107–154

    Google Scholar 

  • Hayakawa KI, Henig YS, Gilbert SG (1975) Formulae for predicting gas exchange of fresh produce in polymer film package. J Food Sci 40:186–191

    Article  CAS  Google Scholar 

  • Henig YS, Gilbert SG (1975) Computer analysis of the variables affecting respiration and quality in produce packaged in polymeric films. J Food Sci 40:1033–1035

    Article  CAS  Google Scholar 

  • Hill AV (1928) Diffusion of oxygen and lactic acid through tissues. Proc R Soc Biol Ser B 104:39–96

    Article  CAS  Google Scholar 

  • Hobson G, Burton KS (1989) The application of plastic film technology to the preservation of fresh horticultural produce. Prof Hort 3:20–23

    Google Scholar 

  • Hulme AC (1951) Apparatus for the measurement of gaseous conditions inside apple fruits. J Exp Bot 2:65–85

    Article  CAS  Google Scholar 

  • Hulme AC (1956) Carbon dioxide injury and the presence of succinic acid in apples. Nature 178:218

    Article  CAS  Google Scholar 

  • Isenberg MFR (1979) Controlled atmosphere storage of vegetables. Hort Rev 1:337–394

    CAS  Google Scholar 

  • Isherwood AC (1973) Starch-sugar interconversion in Solanum tuberosum. Phytochemistry 12:2579–2591

    Article  CAS  Google Scholar 

  • Jacobs MH (1967) Diffusion processes. Springer, New York

    Book  Google Scholar 

  • Jacobson BS, Smith B, Epstein S, Laties GG (1970) The prevalence of carbon-13 in respiratory carbon dioxide as an indicator of the type of endogenous substrate. J Gen Physiol 25:1–17

    Article  Google Scholar 

  • James WO (1953) Plant respiration. Oxford University Press, Oxford

    Google Scholar 

  • Jost W (1960) Diffusion in solids, liquids and gases. Academic, New York

    Google Scholar 

  • Jost W (1967) Physical chemistry, an advanced treatise, Eyring H, Henderson D, Jost W. (eds) Academic, New York

    Google Scholar 

  • Jurin V, Karel M (1963) Studies on control of respiration of McIntosh apples by packaging methods. Food Technol 17:104–108

    CAS  Google Scholar 

  • Kader AA (1980) Prevention of ripening in fruits by use of controlled atmospheres. Food Technol 34:51–54

    Google Scholar 

  • Kader AA (1985) Modified atmospheres: an index reference list with emphasis on horticultural commodities. Post Harvest Hort Series 3(Supplement No. 4), University of California, Davis

    Google Scholar 

  • Kader AA (1986) Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol 40:94–104

    Google Scholar 

  • Kahl G (1974) Metabolism in plant storage tissue slices. Bot Rev 40:263–314

    Article  CAS  Google Scholar 

  • Kanellis AK, Solomos T, Roubelakis-Angelakis KA (1990) Suppression of cellulase and polygalacturonase and induction of alcohol dehydrogenase isoenzymes in avocado fruit mesocarp subjected to low oxygen stress. Plant Physiol 96:269–274

    Article  Google Scholar 

  • Kidd F, West C (1945) Respiratory activity and duration of life of apples. Plant Physiol 20:467–504

    Article  CAS  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  CAS  Google Scholar 

  • Knee M (1980) Physiological responses of apple fruits to oxygen concentrations. Ann Appl Biol 96:243–253

    Article  Google Scholar 

  • Kuai J, Dilley DR (1992) Extraction, partial purification and characterization of 1-aminocyclopropane-1-carboxylic oxidase from apple fruit. Postharvest Biol Technol 1:203–211

    Article  CAS  Google Scholar 

  • Lancaster P, Salkauskas K (1986) Curve and surface fitting. Academic, New York

    Google Scholar 

  • Laties GG (1978) The development and control of respiratory pathways in slices of plant storage organs. In: Kahl G (ed) Biochemistry of wounded plant tissues. Walter de Gruyter, Berlin, pp 421–466

    Google Scholar 

  • Laties GG (1982) The cyanide-resistant, alternative path in higher plant respiration. Annu Rev Plant Phys 33:519–555

    Article  CAS  Google Scholar 

  • Lipton WJ, Harris CM (1974) Controlled atmosphere effects for fresh vegetables and fruits: why and when. In: Haard NF, Salunke DK (eds) Postharvest biology and handling of fruits and vegetables, vol 2. AVI Publishing, Westport, CT

    Google Scholar 

  • Liu FW, Long-Jum C (1986) Responses of daminozide-sprayed McIntosh apples to various concentrations of oxygen and ethylene in simulated CA storage. J Am Soc Hort Sci 111:400–403

    CAS  Google Scholar 

  • Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  CAS  Google Scholar 

  • Lougheed EC (1987) Interactions of oxygen, carbon dioxide, temperature and ethylene that may induce injuries in vegetables. HortScience 22:791–794

    Google Scholar 

  • Lyons SM (1973) Chilling injuries in plants. Annu Rev Plant Physiol 24:445–446

    Article  CAS  Google Scholar 

  • Mannapperuma JD, Singh RP, Montero ME (1991) Simultaneous gas diffusion and chemical reaction in foods stored in modified atmospheres. J Food Eng 14:167–183

    Article  Google Scholar 

  • Mapson LW, Burton WG (1962) The terminal oxidases of potato tuber. Biochem J 82:19–25

    Article  CAS  Google Scholar 

  • Mapson LW, Robinson JE (1966) Relation between oxygen tension, biosynthesis of ethylene, respiration and ripening changes in banana fruit. J Food Technol 1:215–225

    Article  CAS  Google Scholar 

  • McMurchie EJ, McGlasson BW, Eaks JL (1972) Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236

    Article  CAS  Google Scholar 

  • Nakhasi S, Schlimme D, Solomos T (1991) Storage potential of tomatoes harvested at the breaker stage using modified atmosphere packaging. J Food Sci 55:55–59

    Article  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology. Freeman and Company, San Francisco

    Google Scholar 

  • Quazi MH, Freebairn HT (1970) The influence of ethylene, oxygen and carbon dioxide on ripening of bananas. Bot Gaz 131:5–14

    Article  CAS  Google Scholar 

  • Saltveit ME (1989) A summary of requirements and recommendations for the controlled and modified atmosphere storage of harvested vegetables. In: Controlled Atmosphere Research Conference, Wenatchee, WA

    Google Scholar 

  • Siedow JN (1982) The nature of cyanide-resistant pathway in plant mitochondria. Rec Adv Phytochem 16:47–84

    CAS  Google Scholar 

  • Siripanich J, Kader AA (1985a) Effects of CO2 on total phenolics, phenyl-alanine ammonia lyase, and polyphenol oxidase in lettuce tissue. J Am Soc Hort Sci 110:249–253

    Google Scholar 

  • Siripanich J, Kader AA (1985b) Effects of CO2 on cinnamic acid 4-hydroxylase in relation to phenolic metabolism in lettuce tissue. J Am Soc Hort Sci 110:333–335

    Google Scholar 

  • Siripanich J, Kader AA (1986) Changes in cytoplasmic and vacuolar pH in harvested lettuce tissue as influenced by CO2. J Am Soc Hort Sci 111:73–77

    Google Scholar 

  • Smock RM (1979) Controlled atmosphere storage of fruits. Hort Rev 1:301–336

    CAS  Google Scholar 

  • Solomos T (1977) Cyanide-resistant respiration in higher plants. Annu Rev Plant Physiol 28:279–297

    Article  CAS  Google Scholar 

  • Solomos T (1982) Effect of oxygen concentration on fruit respiration: nature of respiratory diminution. In: Richardson DG, Meheriuk M (eds) Controlled atmospheres for storage transport of perishable agricultural commodities. Timber Press, Beaverton, OR, pp 161–170

    Google Scholar 

  • Solomos T (1987) Principles of gas exchange in bulky plant tissues. HortSci 22:766–771

    Google Scholar 

  • Solomos T (1988) Respiration in senescing plant organs: its nature, regulation, and significance. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic, New York

    Google Scholar 

  • Solomos T (1989) A simple method for determining the diffusivity of ethylene in ‘McIntosh’ apples. Sci Hortic 39:311–318

    Article  CAS  Google Scholar 

  • Solomos T, Laties GG (1976) Effects of cyanide and ethylene on respiration of cyanide-sensitive and cyanide-resistant plant tissues. Plant Physiol 58:47–50

    Article  CAS  Google Scholar 

  • Storey KD, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174

    Article  CAS  Google Scholar 

  • Theologis A, Laties GG (1978) Relative contribution of cytochrome-mediated and cyanide-resistant electron transport in fresh and aged potato slices. Plant Physiol 62:238–242

    Article  CAS  Google Scholar 

  • Trout SA, Hall EG, Robertson RN, Hackney FMV, Sykes SM (1942) Studies in the metabolism of apples: preliminary investigations on internal gas composition and its relation to changes in stored ‘Granny Smith’ apples. Aust J Exp Biol Med Sci 20:219–231

    Article  CAS  Google Scholar 

  • Tucker M, Laties GG (1985) The dual role of oxygen in avocado fruit respiration: kinetic analysis and computer modeling of diffusion-affected respiratory oxygen isotherms. Plant Cell Environ 8:117–127

    Article  Google Scholar 

  • Turner JS, Turner DH (1980) The regulation of glycolysis and pentose pathway. In: Davies DD (ed) The biochemistry of plants: a comprehensive treatise, vol 2. Academic, New York, pp 279–316

    Google Scholar 

  • Uritani I, Asahi T (1980) Respiration and related metabolic activity in wounded and infected plant tissues. In: Davies DD (ed) The biochemistry of plants: a comprehensive treatise, vol 2. Academic, New York, pp 463–485

    Google Scholar 

  • van Dongen JT, Fröhlich A, Ramirez-Aguillar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2009) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot (Lond) 103:269–280

    Google Scholar 

  • Waldraw CW, Leonard ER (1939) Studies on tropical fruits: IV. Methods in the investigation of respiration with special reference to banana. Ann Bot 3:27–42

    Article  Google Scholar 

  • Wiskich JT (1980) Control of the Krebs cycle. In: Davies DD (ed) The biochemistry of plants. A comprehensive treatise, vol 2. Academic, New York, pp 243–278

    Google Scholar 

  • Woolley JT (1962) Potato tuber tissue respiration and ventilation. Plant Physiol 37:793–798

    Article  CAS  Google Scholar 

  • Yang CC, Chinnan MS (1987) Modeling of color development of tomatoes in modified atmosphere storage. Trans ASABE 30:548–553

    Article  Google Scholar 

  • Yang CC, Chinnan MS (1988a) Modeling of the effect of CO2 on respiration and quality of stored tomatoes. Trans ASABE 31:920–925

    Article  Google Scholar 

  • Yang CC, Chinnan MS (1988b) Computer modeling and color development of tomatoes stored in polymeric film. J Food Sci 53:869–872

    Article  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theophanes Solomos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Solomos, T. (2017). Aspects of the Biology and Physics Underlying Modified Atmosphere Packaging. In: Yildiz, F., Wiley, R. (eds) Minimally Processed Refrigerated Fruits and Vegetables. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-7018-6_2

Download citation

Publish with us

Policies and ethics