Skip to main content

Multiparticulate Systems for Paediatric Drug Delivery

  • Chapter
  • First Online:
Multiparticulate Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

This chapter explores the feasibility of formulating drugs as multiparticulates for children. The paediatric population is diverse and ranges from preterm infants to teenagers between 16 and 18 years of age. Salient physiological differences exist within this population as compared with adults which translate to significant changes in pharmacokinetic characteristics of administered drugs. Thus paediatrics should not be treated as ‘miniature’ adults requiring simple dose reduction during drug therapy administration. Factors such as physiology/drug pharmacokinetics, child capability, duration and frequency of therapy, convenience and acceptability as well as impact on caregivers must be considered during choice and design of paediatric dosage forms. Multiparticulates are solid dosage forms containing small discrete spherical subunits <2.5 mm in size, with each unit displaying characteristic functionalities that are independent of other subunits. Multiparticulates present a versatile and convenient dosage form with multiple applications such that they can be sprinkled on semisolid meals for younger children, or compressed into fast disintegrating tablets for older children. Major considerations during paediatric multiparticulate drug development include palatability and taste masking since these are oral dosage forms that release the drug in close proximity of the taste buds, robustness of coatings that give each subunit its individualised functionality, safe use of excipients as well as the ease of extemporaneous preparations where individual dose titration may be required. The World Health Organization (WHO) has proposed a paradigm shift from the use of liquids to age-appropriate solid dosage forms for paediatrics, and this may result in an increased number of approved multiparticulate paediatric formulations in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey N, Majumdar S, Rao M. Multiparticulate drug delivery systems for controlled release. Trop J Pharm Res. 2008;7(3):1067–75.

    Article  Google Scholar 

  2. Gandhi B, Baheti J. Multiparticulates drug delivery systems: a review. Int J Pharm Chem Sci. 2013;2(3):1620–6.

    Google Scholar 

  3. Cram A, Bartlett JA, Heimlich J. Oral multiparticulates as a flexible solid dosage form approach for paediatric use. Bio Pharma Asia. 2013. https://biopharma-asia.com/magazine-articles/oral-multiparticulates-as-a-flexible-solid-dosage-form-approach-for-paediatric-use/.

  4. Varum FJ, Merchant HA, Basit AW. Oral modified-release formulations in motion: the relationship between gastrointestinal transit and drug absorption. Int J Pharm. 2010;395(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  5. Patwekar SL, Baramade MK. Controlled release approach to novel multiparticulate drug delivery system. Int J Pharm Pharm Sci. 2012;4(3):757–63.

    CAS  Google Scholar 

  6. EMA. Reflection paper: Formulations of choice for the paediatric population. 2006. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003782.pdf. Accessed 14 Apr 2014.

  7. Wood AJ, Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. New Engl J Med. 2003;349(12):1157–67.

    Article  Google Scholar 

  8. Milsap RL, Jusko WJ. Pharmacokinetics in the infant. Environ Health Perspect. 1994;102(Suppl 11):107.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaye JL. Review of paediatric gastrointestinal physiology data relevant to oral drug delivery. Int J Clin Pharm. 2011;33(1):20–4.

    Article  PubMed  Google Scholar 

  10. Strolin Benedetti M, Baltes E. Drug metabolism and disposition in children. Fund Clin Pharm. 2003;17(3):281–99.

    Article  CAS  Google Scholar 

  11. Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45(11):1077–97.

    Article  CAS  PubMed  Google Scholar 

  12. Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  13. Cram A, Breitkreutz J, Desset-Brèthes S, Nunn T, Tuleu C. Challenges of developing palatable oral paediatric formulations. Int J Pharm. 2009;365(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  14. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (odmts) - a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm. 2011;78(3):462–9. doi:10.1016/j.ejpb.2011.02.005.

    Article  CAS  PubMed  Google Scholar 

  15. Thomson SA, Tuleu C, Wong IC, Keady S, Pitt KG, Sutcliffe AG. Minitablets: new modality to deliver medicines to preschool-aged children. Pediatrics. 2009;123(2):e235–8.

    Article  PubMed  Google Scholar 

  16. Kayumba P, Huyghebaert N, Cordella C, Ntawukuliryayo J, Vervaet C, Remon JP. Quinine sulphate pellets for flexible pediatric drug dosing: formulation development and evaluation of taste-masking efficiency using the electronic tongue. Eur J Pharm Biopharm. 2007;66(3):460–5.

    Article  CAS  PubMed  Google Scholar 

  17. Clarke G, Newton J, Short M. Comparative gastrointestinal transit of pellet systems of varying density. Int J Pharm. 1995;114(1):1–11.

    Article  CAS  Google Scholar 

  18. Basit AW, Podczeck F, Michael Newton J, Waddington WA, Ell PJ, Lacey LF. The use of formulation technology to assess regional gastrointestinal drug absorption in humans. EurJ Pharm Sci. 2004;21(2):179–89.

    Article  CAS  Google Scholar 

  19. Wilding IR, Hardy JG, Sparrow RA, Davis SS, Daly PB, English JR. In vivo evaluation of enteric-coated naproxen tablets using gamma scintigraphy. Pharm Res. 1992;9(11):1436–41.

    Article  CAS  PubMed  Google Scholar 

  20. Davis S, Hardy J, Taylor M, Whalley D, Wilson C. A comparative study of the gastrointestinal transit of a pellet and tablet formulation. Int J Pharm. 1984;21(2):167–77.

    Article  CAS  Google Scholar 

  21. Abrahamsson B, Alpsten M, Jonsson UE, Lundberg P, Sandberg A, Sundgren M, Svenheden A, Tölli J. Gastro-intestinal transit of a multiple-unit formulation (metoprolol cr/zok) and a non-disintegrating tablet with the emphasis on colon. Int J Pharm. 1996;140(2):229–35.

    Article  CAS  Google Scholar 

  22. Abdul S, Chandewar AV, Jaiswal SB. A flexible technology for modified-release drugs: multiple-unit pellet system (mups). J Control Release. 2010;147(1):2–16.

    Article  CAS  PubMed  Google Scholar 

  23. Roy J. Pharmaceutical impurities—a mini-review. AAPs Pharm Sci Tech. 2002;3(2):1–8.

    Article  Google Scholar 

  24. Tegeli V, Gajeli G, Chougule G, Thorat Y, Shivsharan U, Kumbhar S. Significance of impurity profiling: a review. Int J Drug Formul Res. 2011;2(4):174–95.

    Google Scholar 

  25. Roy P, Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: Current perspectives. J Control Release. 2009;134(2):74–80.

    Article  CAS  PubMed  Google Scholar 

  26. Walsh J, Bickmann D, Breitkreutz J, Chariot-Goulet M. Delivery devices for the administration of paediatric formulations: Overview of current practice, challenges and recent developments. Int J Pharm. 2011;415(1):221–31.

    Article  CAS  PubMed  Google Scholar 

  27. Ernest TB, Elder DP, Martini LG, Roberts M, Ford JL. Developing paediatric medicines: identifying the needs and recognizing the challenges. J Pharm Pharmacol. 2007;59(8):1043–55. doi:10.1211/jpp.59.8.0001.

    Article  CAS  PubMed  Google Scholar 

  28. Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm. 2004;30(5):429–48.

    Article  CAS  PubMed  Google Scholar 

  29. Kaushik D, Dureja H. Recent patents and patented technology platforms for pharmaceutical taste masking. Recent Pat Drug Deliv Formul. 2014;8(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  30. Heer D, Aggarwal G, Kumar SH. Recent trends of fast dissolving drug delivery system-an overview of formulation technology. Pharmacophore. 2013;4(1):1–9.

    CAS  Google Scholar 

  31. Walsh J, Cram A, Woertz K, Breitkreutz J, Winzenburg G, Turner R, Tuleu C. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14–33. http://dx.doi.org/10.1016/j.addr.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  32. Sharma V, Chopra H. Role of taste and taste masking of bitter drugs in pharmaceutical industries an overview. Int J Pharm Pharm Sci. 2010;2(4):123–5.

    Google Scholar 

  33. Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci. 2015;75:2–9. http://dx.doi.org/10.1016/j.ejps.2015.02.015

    Article  CAS  PubMed  Google Scholar 

  34. Eby GA. Flavor stable zinc acetate compositions for oral absorption. Google Patents. 1992.

    Google Scholar 

  35. Paradissis GN. Sachet drug delivery system. Google Patents. 1988.

    Google Scholar 

  36. Ley JP. Masking bitter taste by molecules. Chemosens Percept. 2008;1(1):58–77.

    Article  Google Scholar 

  37. Zyck DJ, Greenberg MJ, Barkalow DG, Marske SW, Urnezis PW, Mazzone P. Antacid chewing gum products coated with high viscosity materials. Google Patents. 2003.

    Google Scholar 

  38. Toraishi K, Nakamura N, Yuizono Y, Mori M, Kurokawa M. Application of a rapid–jelly form confectionery for improving children’s compliance in taking bitter medicines. Jpn J Hosp Pharm. 1988;24(5):479–83.

    Article  Google Scholar 

  39. Morott JT, Pimparade M, Park JB, Worley CP, Majumdar S, Lian Z, Pinto E, Bi Y, Durig T, Repka MA. The effects of screw configuration and polymeric carriers on hot-melt extruded taste-masked formulations incorporated into orally disintegrating tablets. J Pharm Sci. 2015;104(1):124–34.

    Article  CAS  PubMed  Google Scholar 

  40. Puttewar T, Kshirsagar M, Chandewar A, Chikhale R. Formulation and evaluation of orodispersible tablet of taste masked doxylamine succinate using ion exchange resin. J King Saud Uni-Sci. 2010;22(4):229–40.

    Article  Google Scholar 

  41. Shah PP, Mashru RC. Palatable reconstitutable dry suspension of artemether for flexible pediatric dosing using cyclodextrin inclusion complexation. Pharm Dev Technol. 2010;15(3):276–85.

    Article  CAS  PubMed  Google Scholar 

  42. Karaman R. Prodrugs for masking bitter taste of antibacterial drugs—a computational approach. J Mol Model. 2013;19(6):2399–412.

    Article  CAS  PubMed  Google Scholar 

  43. Cerea M, Zheng W, Young CR, McGinity JW. A novel powder coating process for attaining taste masking and moisture protective films applied to tablets. Int J Pharm. 2004;279(1):127–39.

    Article  CAS  PubMed  Google Scholar 

  44. Shirai Y, Sogo K, Yamamoto K, Kojima K, Fujioka H, Makita H, Nakamura Y. A novel fine granule system for masking bitter taste. Biol Pharm Bull. 1993;16(2):172.

    Article  CAS  PubMed  Google Scholar 

  45. Witzleb R, Kanikanti V-R, Hamann H-J, Kleinebudde P. Solid lipid extrusion with small die diameters–electrostatic charging, taste masking and continuous production. Eur J Pharm Biopharm. 2011;77(1):170–7.

    Article  CAS  PubMed  Google Scholar 

  46. Mohammed A. Coating apparatus and method. UK Patent. 2014. 1419308.0.

    Google Scholar 

  47. Schiffter H, Condliffe J, Vonhoff S. Spray-freeze-drying of nanosuspensions: The manufacture of insulin particles for needle-free ballistic powder delivery. J R Soc Interface. 2010;7:S483–500. doi:10.1098/rsif.2010.0114.focus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Rational development of taste masked oral liquids guided by an electronic tongue. Int J Pharm. 2010;400(1):114–23.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Khattawi A, Iyire A, Dennison T, Dahmash E, Bailey C, Smith J, Rue P, Mohammed A. Systematic screening of compressed odt excipients: cellulosic versus non-cellulosic. Curr Drug Deliv. 2014;11:486–500.

    Article  CAS  PubMed  Google Scholar 

  50. Al-Khattawi A, Alyami H, Townsend B, Ma X, Mohammed AR. Evidence-based nanoscopic and molecular framework for excipient functionality in compressed orally disintegrating tablets. PLoS One. 2014;9(7):e101369.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stoltenberg I, Winzenburg G, Breitkreutz J. Solid oral dosage forms for children–formulations, excipients and acceptance issues. Eur Ind Pharm. 2011;8:4–7.

    Google Scholar 

  52. Al-khattawi A, Mohammed A. Excipients in medicines for children: scientific and regulatory paradigms. Eur Pharm Rev. 2014;19:67–70.

    Google Scholar 

  53. Pifferi G, Restani P. The safety of pharmaceutical excipients. Il Farmaco. 2003;58(8):541–50.

    Article  CAS  PubMed  Google Scholar 

  54. Nahata MC. Pediatric drug formulations: challenges and potential solutions. Ann Pharm. 1999;33(2):247–9.

    CAS  Google Scholar 

  55. Guidance for industry, bioavailability and bioequivalence studies for orally-administered drug products—general considerations. Us department of health and human services food and drug administration center for drug evaluation and research. 2003. https://www.fda.gov/ohrms/dockets/ac/03/briefing/3995B1_07_GFI-BioAvail-BioEquiv.pdf.

  56. Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59(6):674–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Takon I. Clinical use of a modified release methylphenidate in the treatment of childhood attention deficit hyperactivity disorder. Ann Gen Psychiatry. 2011;10:25.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Amrutkar P, Chaudhari P, Patil S. Design and in vitro evaluation of multiparticulate floating drug delivery system of zolpidem tartarate. Colloids Surf B Biointerfaces. 2012;89:182–7.

    Article  CAS  PubMed  Google Scholar 

  59. Dhole A, Gaikwad P, Bankar V, Pawar S. A review on floating multiparticulate drug delivery system--a novel approach to gastric retention. Int J Pharm Sci Rev Res. 2011;6(2):205–11.

    CAS  Google Scholar 

  60. Patel PB, Dhake AS. Multiparticulate approach: an emerging trend in colon specific drug delivery for chronotherapy. J Appl Pharm Sci. 2011;1(05):59–63.

    CAS  Google Scholar 

  61. Shukla D, Chakraborty S, Singh S, Mishra B. Lipid-based oral multiparticulate formulations-advantages, technological advances and industrial applications. Expert Opin Drug Deliv. 2011;8(2):207–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzal R. Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Controlled Release Society

About this chapter

Cite this chapter

Iyire, A., Mohammed, A.R. (2017). Multiparticulate Systems for Paediatric Drug Delivery. In: Rajabi-Siahboomi, A. (eds) Multiparticulate Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7012-4_9

Download citation

Publish with us

Policies and ethics